#' mtlr model using GA as feature selection
#'
#'
#' @param r a numeric value, a seed to run this method
#' @param data a dataframe, the data used to performance this survival model
#' @param cvK a numeric value, cross-validation fold
#' @param numm a numeric value, the number of variables,i.e.for example, number of proteins in the data
#' @param topnumm a numeric value, the number of variables selected to be passed into the model, for example, the number of DE genes
#' @param generation_num a numeric value, the generation number used in the GA algorithm, details see package "GenAlgo"
#' @param timess a numeric vector of length 15, contains time points to get the time-dependent AUC values
#' @return a data.frame with allevaluation measurements in all columns and rows are each fold results from cross-validation
#'
#' @examples
#' data("exampledt", package = "SurvBenchmark")
#' fitform_ogl=survival::Surv(time,status)~.
#' formula1=fitform_ogl
#' formula2=fitform_ogl
#' formula3=survival::Surv(time,status)~1
#' formula4=survival::Surv(time,status)~1
#' form1=as.formula(~.)
#' timess=seq(as.numeric(summary(cancerdt2_1$time)[2]),as.numeric(summary(cancerdt2_1$time)[5]),(as.numeric(summary(cancerdt2_1$time)[5])-as.numeric(summary(cancerdt2_1$time)[2]))/14)
#' want=ga_mtlr_fun(1,cancerdt2_1,5, 16047,5,20,timess);
#' @export
#'
ga_mtlr_fun=function(r,data,cvK,numm,topnumm,generation_num,timess){
if (! is.numeric(r)) stop("Input seed is wrong")
if (! is.numeric(cvK)) stop("Input cross-validation fold number is wrong")
if (! is.numeric(numm)) stop("Input number of variables is wrong")
if (! is.numeric(topnumm)) stop("Input number of top variable selection is wrong")
if (is.null(dim(data))) stop("Input data is wrong")
if (length(timess)!=15) stop("Wrong time vector length")
if (class(timess)!= "numeric") stop("Wrong time vector type")
set.seed(r)
print(r)
cvSets = cvTools::cvFolds(nrow(data), cvK) # permute all the data, into 5 folds
bicfun=purrr::possibly(function(j){
test_id = cvSets$subsets[cvSets$which == j]
test = data[test_id, ]
train = data[-test_id, ]
train2=train[!train$os_class=="not",]
test2=test[!test$os_class=="not",]
##ga feature selection
Data=t(train2[,1:numm]) #gene by patient
myContext <- list(dataset=Data, gps=train2$os_class)
n.individuals <- round(numm*0.8,digits = 0) #searching into 80% of genes
n.features <- topnumm #how many genes we would like to select
y <- matrix(0, n.individuals, n.features)
for (i in 1:n.individuals) {
y[i,] <- sample(1:nrow(Data), n.features)
}
mahaFitness <- function(arow, context) {
GenAlgo::maha(t(context$dataset[arow,]), context$gps, method='var')
}
my.ga <- GenAlgo::GenAlg(y, mahaFitness, GenAlgo::selectionMutate, myContext, 0.001, 0.75) #there might be sigularity issues
for (i in 1:generation_num) {
my.ga <- GenAlgo::newGeneration(my.ga)
}
#summary(my.ga)
selectedname <- rownames(Data[my.ga@best.individual,])
#print(selectedname)
train=train[,colnames(train)%in%c(selectedname,"status","time")]
test=test[,colnames(test)%in%c(selectedname,"status","time")]
#fitform_ogl=as.formula(paste("Surv(time, status)~ ", paste(colnames(train)[1:(dim(train)[2]-2)], collapse= "+")))
fitform_ogl=survival::Surv(time,status)~.
form1=as.formula(~.)
formula1=fitform_ogl
formula2=fitform_ogl
formula3=survival::Surv(time,status)~1
formula4=survival::Surv(time,status)~1
#form1=as.formula(paste("~ ",paste(colnames(train)[1:(dim(train)[2]-2)], collapse= "+")))
set.seed(123)
formula=fitform_ogl
se=MTLR::mtlr_cv(formula,train, C1_vec = c(0.01,0.05,0.1,0.5,1,10))
fullMod <- MTLR::mtlr(formula = formula, data = train,C1=se$best_C1)
pred_tr <- predict(fullMod, train, type = "prob_event")
pred_te <- predict(fullMod, test, type = "prob_event")
#harrel cindex
harrelC1 <- Hmisc::rcorr.cens(-pred_te,with(test,survival::Surv(time,status)))
hc<-harrelC1["C Index"]
#begg cindex
lp<- pred_tr
lpnew <- pred_te
Surv.rsp <- survival::Surv(train$time, train$status)
Surv.rsp.new <- survival::Surv(test$time, test$status)
bc <- survAUC::BeggC(Surv.rsp, Surv.rsp.new,lp, lpnew)
#uno cindex
unoc<-survAUC::UnoC(Surv.rsp, Surv.rsp.new, lpnew)
#gh cindex
ghc<-survAUC::GHCI(lpnew)
#br
briers1 <- survAUC::predErr(Surv.rsp, Surv.rsp.new, lp, lpnew,times=test$time, type = "brier", int.type = "unweighted")$error
br1<-sum(na.omit(briers1))
briers2<-survAUC::predErr(Surv.rsp, Surv.rsp.new, lp, lpnew,times=test$time, type = "brier", int.type = "weighted")$error
br2<-sum(na.omit(briers2))
ibsfun1=purrr::possibly(function(modell){
briers3 <- pec::pec(list("cox1"=modell),data=test,formula=formula1,cens.model="cox")
return(crps(briers3)[2])
},otherwise = NA)
#briers3 <- pec(list("cox1"=original_cox1),data=test,formula=Surv(tx_gperiod,tx_gstatus)~recip_sex+recip_eth+recip_age+recip_height+recip_weight+recip_smoker+recip_lung+recip_coronary+recip_pvd+recip_cvd+recip_diabetes+recip_waittime+donor_age+donor_sex+donor_height+donor_weight+donor_causedeath_cva+donor_dcd+donor_diabetes+donor_ht+donor_smoker+donor_creatinine+tx_ischaemia+tx_misa+tx_misb+tx_misdr,cens.model="cox")
#bs3[j]<-crps(briers3)[2]
br3<-ibsfun1(fullMod)
ibsfun2=purrr::possibly(function(modell){
briers4 <- pec::pec(list("cox1"=modell),data=test,formula=formula2,cens.model="marginal")
return(crps(briers4)[2])
},otherwise = NA)
br4<-ibsfun2(fullMod)
ibsfun3=purrr::possibly(function(modell){
briers5 <- pec::pec(list("cox1"=modell),data=test,formula=formula3,cens.model="cox")
return(crps(briers5)[2])
},otherwise = NA)
br5<-ibsfun3(fullMod)
ibsfun4=purrr::possibly(function(modell){
briers6 <- pec::pec(list("cox1"=modell),data=test,formula=formula4,cens.model="marginal")
return(crps(briers6)[2])
},otherwise = NA)
br6<-ibsfun4(fullMod)
#time-dependent auc
times <- timess
AUC_CD <- survAUC::AUC.uno(Surv.rsp, Surv.rsp.new, lpnew, times)
a1=AUC_CD$auc[1]
a2=AUC_CD$auc[2]
a3=AUC_CD$auc[3]
a4=AUC_CD$auc[4]
a5=AUC_CD$auc[5]
a6=AUC_CD$auc[6]
a7=AUC_CD$auc[7]
a8=AUC_CD$auc[8]
a9=AUC_CD$auc[9]
a10=AUC_CD$auc[10]
a11=AUC_CD$auc[11]
a12=AUC_CD$auc[12]
a13=AUC_CD$auc[13]
a14=AUC_CD$auc[14]
a15=AUC_CD$auc[15]
a=AUC_CD$iauc
return(c(hc,bc,unoc,ghc,br1,br2,br3,br4,br5,br6,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a))},otherwise=NA)
cv5_result=rbind.data.frame(bicfun(1),bicfun(2),bicfun(3),bicfun(4),bicfun(5))
#colnames(cv5_result)=c("hc","bc","unoc","ghc","br1","br2","br3","br4","br5","br6","a1","a2","a3","a4","a5","a6","a7","a8","a9","a10","a11","a12","a13","a14","a15","a")
# want=cbind.data.frame(hc_acc5,bc_acc5,unoc_acc5,ghc_acc5,bs1,bs2,bs3,bs4,bs5,bs6,auc1,auc2,auc3,auc4,auc5,auc6,auc7,auc8,auc9,auc10,auc11,auc12,auc13,auc14,auc15,auc)
return(cv5_result)}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.