library(WGCNA) library(ggplot2) library(reshape2) library(stringr) library(YSX) options(stringsAsFactors = FALSE) if (Sys.info()['sysname'] == "Linux"){ # 打开多线程 enableWGCNAThreads() } else { # if mac allowWGCNAThreads() } # 格式如前面描述 # 常规表达矩阵,log2转换后或 # Deseq2的varianceStabilizingTransformation转换的数据 # 如果有批次效应,需要事先移除,可使用removeBatchEffect # 如果有系统偏移(可用boxplot查看基因表达分布是否一致), # 需要quantile normalization exprMat <- "LiverFemaleClean.txt" # 如果没有,设置为空 # traitData <- NULL traitData <- "TraitsClean.txt" wgcnaL <- WGCNA_readindata(exprMat, traitData) datExpr <- wgcnaL$datExpr WGCNA_dataCheck(datExpr, saveplot="WGCNA_dataCheck.pdf", width=20) datExpr <- WGCNA_dataFilter(datExpr) #datExpr <- WGCNA_sampleClusterDetectOutlier(datExpr) datExpr <- WGCNA_sampleClusterDetectOutlier(datExpr, traitColors=wgcnaL$traitColors, saveplot="WGCNA_sampleClusterDetectOutlier.pdf") power <- WGCNA_softpower(datExpr, saveplot="WGCNA_softpower.pdf") net <- WGCNA_coexprNetwork(datExpr, power, saveplot="WGCNA_module_generation_plot.pdf") MEs_col <- WGCNA_saveModuleAndMe(net, datExpr, saveplot="WGCNA_module_correlation_plot.pdf") WGCNA_MEs_traitCorrelationHeatmap(MEs_col, traitData=wgcnaL$traitData, saveplot="WGCNA_moduletrait_correlation_plot.pdf") cyt <- WGCNA_cytoscape(net, power, datExpr) hubgene <- WGCNA_hubgene(cyt) WGCNA_moduleTraitPlot(MEs_col, traitData=wgcnaL$traitData, saveplot="WGCNA_moduleTraitHeatmap.pdf", width=15, height=12) geneTraitCor <- WGCNA_ModuleGeneTraitHeatmap(datExpr, traitData=wgcnaL$traitData, net=net, saveplot="WGCNA_ModuleGeneTraitHeatmap.pdf") WGCNA_GeneModuleTraitCoorelation(datExpr, MEs_col, geneTraitCor, traitData=wgcnaL$traitData, net)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.