tune_lucid: Parallel Grid Search for Tuning Parameters in Latent Cluster...

Description Usage Arguments Value Author(s) References Examples

View source: R/tune_lucid.R

Description

tune_lucid fits regularized latent cluster models with various combinations of three tuning parameters based on joint inference across data types to perform a grid-search helping determine an optimal choice of three tuning parameters with minimum model BIC.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
tune_lucid(
  G = NULL,
  CoG = NULL,
  Z = NULL,
  CoY = NULL,
  Y,
  K,
  Family,
  USEY = TRUE,
  initial = def_initial(),
  LRho_g,
  URho_g,
  NoRho_g,
  LRho_z_invcov,
  URho_z_invcov,
  NoRho_z_invcov,
  LRho_z_covmu,
  URho_z_covmu,
  NoRho_z_covmu,
  NoCores = detectCores() - 1
)

Arguments

G

Genetic features, a matrix

CoG

Covariates to be added in G->X path

Z

Biomarker data, a matrix

CoY

Covariates to be added in X->Y path

Y

Disease outcome, a vector

K

Pre-specified # of latent clusters

Family

"binary" or "normal" for Y

USEY

Using Y or not, default is TRUE

initial

A list of initial model parameters will be returned for integrative clustering

LRho_g

Lower limit of the penalty for selection on genetic data

URho_g

Upper limit of the penalty for selection on genetic data

NoRho_g

Number of Rho_g for grid-search

LRho_z_invcov

Lower limit of the penalty for the inverse of covariance of biomarkers

URho_z_invcov

Upper limit of the penalty for the inverse of covariance of biomarkers

NoRho_z_invcov

Number of Rho_z_invcov for grid-search

LRho_z_covmu

Lower limit of the penalty for the product of covariance and mean of biomarkers

URho_z_covmu

Upper limit of the penalty for the product of covariance and mean of biomarkers

NoRho_z_covmu

Number of Rho_z_covmu for grid-search

NoCores

Number of CPU cores for parallel grid-search, default is total number of cores minus 1

Value

tune_lucid returns an object of list containing Modelfits, Results, and Optimal:

Modelfits

Latent cluster model fits for a combination of given tuning parameters

Results

Summary results of grid-search

Optimal

Features of the optimal model with minimum BIC in the grid-search summary

Author(s)

Cheng Peng, Zhao Yang, David V. Conti

References

Cheng Peng, Jun Wang, Isaac Asante, Stan Louie, Ran Jin, Lida Chatzi, Graham Casey, Duncan C Thomas, David V Conti, A Latent Unknown Clustering Integrating Multi-Omics Data (LUCID) with Phenotypic Traits, Bioinformatics, , btz667, https://doi.org/10.1093/bioinformatics/btz667.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
# For a testing dataset with 10 genetic features (5 causal) and 4 biomarkers (2 causal)
# Parallel grid-search with 8 combinations of tuning parameters
## Not run: 
GridSearch <- tune_lucid(G=G1, Z=Z1, Y=Y1, K=2, Family="binary", USEY = TRUE, NoCores = 2,
                         LRho_g = 0.008, URho_g = 0.012, NoRho_g = 2,
                         LRho_z_invcov = 0.04, URho_z_invcov = 0.06, NoRho_z_invcov = 2,
                         LRho_z_covmu = 90, URho_z_covmu = 100, NoRho_z_covmu = 2)
GridSearch$Results
# Determine the best tuning parameters
GridSearch$Optimal

## End(Not run)

USCbiostats/LUCid documentation built on Feb. 22, 2020, 8:57 p.m.