Description Usage Arguments Value Author(s) References Examples
tune_lucid
fits regularized latent cluster models with various combinations of three tuning parameters based on joint inference across data types to perform a grid-search helping determine an optimal choice of three tuning parameters with minimum model BIC.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | tune_lucid(
G = NULL,
CoG = NULL,
Z = NULL,
CoY = NULL,
Y,
K,
Family,
USEY = TRUE,
initial = def_initial(),
LRho_g,
URho_g,
NoRho_g,
LRho_z_invcov,
URho_z_invcov,
NoRho_z_invcov,
LRho_z_covmu,
URho_z_covmu,
NoRho_z_covmu,
NoCores = detectCores() - 1
)
|
G |
Genetic features, a matrix |
CoG |
Covariates to be added in G->X path |
Z |
Biomarker data, a matrix |
CoY |
Covariates to be added in X->Y path |
Y |
Disease outcome, a vector |
K |
Pre-specified # of latent clusters |
Family |
"binary" or "normal" for Y |
USEY |
Using Y or not, default is TRUE |
initial |
A list of initial model parameters will be returned for integrative clustering |
LRho_g |
Lower limit of the penalty for selection on genetic data |
URho_g |
Upper limit of the penalty for selection on genetic data |
NoRho_g |
Number of |
LRho_z_invcov |
Lower limit of the penalty for the inverse of covariance of biomarkers |
URho_z_invcov |
Upper limit of the penalty for the inverse of covariance of biomarkers |
NoRho_z_invcov |
Number of |
LRho_z_covmu |
Lower limit of the penalty for the product of covariance and mean of biomarkers |
URho_z_covmu |
Upper limit of the penalty for the product of covariance and mean of biomarkers |
NoRho_z_covmu |
Number of |
NoCores |
Number of CPU cores for parallel grid-search, default is total number of cores minus 1 |
tune_lucid
returns an object of list containing Modelfits, Results, and Optimal:
Modelfits |
Latent cluster model fits for a combination of given tuning parameters |
Results |
Summary results of grid-search |
Optimal |
Features of the optimal model with minimum BIC in the grid-search summary |
Cheng Peng, Zhao Yang, David V. Conti
Cheng Peng, Jun Wang, Isaac Asante, Stan Louie, Ran Jin, Lida Chatzi, Graham Casey, Duncan C Thomas, David V Conti, A Latent Unknown Clustering Integrating Multi-Omics Data (LUCID) with Phenotypic Traits, Bioinformatics, , btz667, https://doi.org/10.1093/bioinformatics/btz667.
1 2 3 4 5 6 7 8 9 10 11 12 | # For a testing dataset with 10 genetic features (5 causal) and 4 biomarkers (2 causal)
# Parallel grid-search with 8 combinations of tuning parameters
## Not run:
GridSearch <- tune_lucid(G=G1, Z=Z1, Y=Y1, K=2, Family="binary", USEY = TRUE, NoCores = 2,
LRho_g = 0.008, URho_g = 0.012, NoRho_g = 2,
LRho_z_invcov = 0.04, URho_z_invcov = 0.06, NoRho_z_invcov = 2,
LRho_z_covmu = 90, URho_z_covmu = 100, NoRho_z_covmu = 2)
GridSearch$Results
# Determine the best tuning parameters
GridSearch$Optimal
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.