#' @importFrom zoo as.yearmon
newHistogramPD <- function(.dt = data.table::data.table(),
variables = veupathUtils::VariableMetadataList(),
viewport = list('xMin' = NULL,
'xMax' = NULL),
binWidth,
binReportValue = character(),
value = character(),
barmode = character(),
overlayValues = veupathUtils::BinList(),
sampleSizes = logical(),
completeCases = logical(),
evilMode = character(),
verbose = logical(),
...,
class = character()) {
.pd <- newPlotdata(.dt = .dt,
variables = variables,
overlayValues = overlayValues,
sampleSizes = sampleSizes,
completeCases = completeCases,
inferredVarAxis = 'x',
evilMode = evilMode,
verbose = verbose,
class = "histogram")
attr <- attributes(.pd)
variables <- attr$variables
x <- veupathUtils::findColNamesFromPlotRef(variables, 'xAxis')
xType <- veupathUtils::findDataTypesFromPlotRef(variables, 'xAxis')
group <- veupathUtils::findColNamesFromPlotRef(variables, 'overlay')
panel <- findPanelColName(veupathUtils::findVariableSpecFromPlotRef(variables, 'facet1'),
veupathUtils::findVariableSpecFromPlotRef(variables, 'facet2'))
if (!length(.pd[[x]])) {
binSlider <- list('min'=jsonlite::unbox(NA), 'max'=jsonlite::unbox(NA), 'step'=jsonlite::unbox(NA))
binSpec <- list('type'=jsonlite::unbox(binReportValue), 'value'=jsonlite::unbox(NA))
viewport <- list('xMin'=0, 'xMax'=-Inf)
summary <- list('min'=jsonlite::unbox(""),
'q1'=jsonlite::unbox(""),
'median'=jsonlite::unbox(""),
'mean'=jsonlite::unbox(""),
'q3'=jsonlite::unbox(""),
'max'=jsonlite::unbox(""))
attr$summary <- summary
attr$viewport <- list('xMin'=jsonlite::unbox(""), 'xMax'=jsonlite::unbox(""))
veupathUtils::logWithTime('No complete cases found.', verbose)
} else {
summary <- as.list(summary(.pd[[x]]))
names(summary) <- c('min', 'q1', 'median', 'mean', 'q3', 'max')
summary <- lapply(summary, as.character)
summary <- lapply(summary, jsonlite::unbox)
attr$summary <- summary
veupathUtils::logWithTime('Supporting summary statistics calculated for histogram.', verbose)
if (is.null(viewport)) {
viewport <- findViewport(.pd[[x]], xType)
veupathUtils::logWithTime('Determined default viewport.', verbose)
} else {
viewport <- validateViewport(viewport, xType, verbose)
}
attr$viewport <- lapply(viewport, as.character)
attr$viewport <- lapply(attr$viewport, jsonlite::unbox)
xVP <- adjustToViewport(.pd[[x]], viewport)
if (binReportValue == 'binWidth') {
if (is.null(binWidth)) {
binWidth <- findBinWidth(xVP)
veupathUtils::logWithTime('Determined ideal bin width.', verbose)
}
if (xType %in% c('NUMBER', 'INTEGER')) {
binSpec <- list('type'=jsonlite::unbox('binWidth'), 'value'=jsonlite::unbox(binWidth))
} else {
numericBinWidth <- as.numeric(gsub("[^0-9.-]", "", binWidth))
if (is.na(numericBinWidth)) { numericBinWidth <- 1 }
unit <- veupathUtils::trim(gsub("^[[:digit:]].", "", binWidth))
binSpec <- list('type'=jsonlite::unbox('binWidth'), 'value'=jsonlite::unbox(numericBinWidth), 'units'=jsonlite::unbox(unit))
}
} else {
if (is.null(binWidth)) {
numBins <- findNumBins(xVP)
veupathUtils::logWithTime('Determined ideal number of bins.', verbose)
} else {
numBins <- binWidthToNumBins(xVP, binWidth)
veupathUtils::logWithTime('Converted provided bin width to number of bins.', verbose)
}
binSpec <- list('type'=jsonlite::unbox('numBins'), 'value'=jsonlite::unbox(numBins))
}
binSlider <- findBinSliderValues(xVP, xType, binWidth, binReportValue)
veupathUtils::logWithTime('Determined bin width slider min, max and step values.', verbose)
}
attr$binSpec <- binSpec
attr$binSlider <- binSlider
if (value == 'count') {
.pd <- binSize(.pd, x, group, panel, NULL, binWidth, viewport)
veupathUtils::logWithTime('Value is set to `count`. Resulting histogram object will represent counts of unique x-axis bins per group.', verbose)
} else if (value == 'proportion' ) {
.pd <- binProportion(.pd, x, group, panel, NULL, binWidth, barmode, viewport)
veupathUtils::logWithTime('Value is set to `proportion`. If barmode is `group` the resulting histogram object will represent the relative proportions of unique x-axis bins across groups. If barmode is `stack` the resulting histogram object will represent the proportions of unique x-axis bins relative to the total x-axis bins in that panel.', verbose)
} else {
stop('Unrecognized argument to "value".')
}
attr$names <- names(.pd)
veupathUtils::setAttrFromList(.pd, attr)
return(.pd)
}
binSlider <- function(.histo) { attr(.histo, 'binSlider') }
binSpec <- function(.histo) { attr(.histo, 'binSpec') }
viewport <- function(.histo) { attr(.histo, 'viewport') }
binWidth <- function(.histo) { ifelse(attr(.histo, 'binSpec')$type == 'binWidth', attr(.histo, 'binSpec')$value, NULL) }
numBins <- function(.histo) { ifelse(attr(.histo, 'binSpec')$type == 'numBins', attr(.histo, 'binSpec')$value, NULL) }
validateBinSlider <- function(binSlider) {
if (!is.list(binSlider)) {
return(FALSE)
} else{
if (!all(c('max', 'min', 'step') %in% names(binSlider))) {
return(FALSE)
}
}
return(TRUE)
}
# possibly make viewport a class when we refactor for s4..
validateViewport <- function(viewport, xType, verbose) {
if (!is.list(viewport)) {
return(FALSE)
} else{
if (!all(c('xMax', 'xMin') %in% names(viewport))) {
return(FALSE)
}
}
if (xType %in% c('NUMBER', 'INTEGER')) {
viewport$xMin <- as.numeric(viewport$xMin)
viewport$xMax <- as.numeric(viewport$xMax)
} else if (xType == 'DATE') {
viewport$xMin <- as.Date(viewport$xMin, format='%Y-%m-%d')
viewport$xMax <- as.Date(viewport$xMax, format='%Y-%m-%d')
}
veupathUtils::logWithTime('Provided viewport validated.', verbose)
return(viewport)
}
validateHistogramPD <- function(.histo, verbose) {
binSlider <- attr(.histo, 'binSlider')
stopifnot(validateBinSlider(binSlider))
variables <- attr(.histo, 'variables')
xtype <- veupathUtils::findDataTypesFromPlotRef(variables, 'xAxis')
xShape <- veupathUtils::findDataShapesFromPlotRef(variables, 'xAxis')
if (!xShape == 'CONTINUOUS') {
stop('The independent axis must be continuous for a histogram.')
}
binWidth <- attr(.histo, 'binWidth')
if (!is.null(binWidth)) {
if (xType == 'DATE' && !is.character(binWidth)) {
stop("binWidth must be a character string for histograms of date values.")
} else if (xType %in% c('NUMBER', 'INTEGER') && !is.numeric(binWidth)) {
stop("binWidth must be numeric for histograms of numeric values.")
}
}
veupathUtils::logWithTime('Histogram request has been validated!', verbose)
return(.histo)
}
#' Histogram as data.table
#'
#' This function returns a data.table of
#' plot-ready data with one row per group (per panel). Columns
#' 'x' and 'y' contain the bin label and count respectively.
#' Column 'group' and 'panel' specify the group the series data
#' belongs to. It is possible to plot missingness in the stratification variables as an explicit 'No data' value using `evilMode`.
#'
#' @section Evil Mode:
#' An `evilMode` exists. It will do the following: \cr
#' - when `strataVariables` it will return 'no data' as a regular value for strata vars but will discard such cases for the axes vars. \cr
#' - when `allVariables` it will return 'no data' as a regular value for all variables. \cr
#' - when `noVariables` it will do the sensible thing and return complete cases only. \cr
#' - not return statsTables \cr
#' - allow smoothed means and agg values etc over axes values where we have no data for the strata vars \cr
#' - return a total count of plotted incomplete cases \cr
#' - represent missingness poorly, conflate the stories of completeness and missingness, mislead you and steal your soul \cr
#' @param data data.frame to make plot-ready data for
#' @param variables veupathUtils::VariableMetadataList
#' @param binWidth numeric value indicating width of bins, character (ex: 'year') if xaxis is a date
#' @param value String indicating how to calculate y-values ('count, 'proportion')
#' @param binReportValue String indicating if number of bins or bin width used should be returned
#' @param barmode String indicating if bars should be stacked or overlaid ('stack', 'overlay')
#' @param viewport List of min and max values to consider as the range of data
#' @param overlayValues veupathUtils::BinList providing overlay values of interest
#' @param sampleSizes boolean indicating if sample sizes should be computed
#' @param completeCases boolean indicating if complete cases should be computed
#' @param evilMode String indicating how evil this plot is ('strataVariables', 'allVariables', 'noVariables')
#' @param verbose boolean indicating if timed logging is desired
#' @return data.table plot-ready data
#' @importFrom stringi stri_count_regex
#' @importFrom jsonlite unbox
#' @examples
#' # Construct example data
#' df <- data.table('entity.xvar' = rnorm(100),
#' 'entity.overlay' = sample(c('red','green','blue'), 100, replace=T), stringsAsFactors = F)
#'
#' # Create VariableMetadataList that specifies variable role in the plot and supplies variable metadata
#' variables <- veupathUtils::VariableMetadataList(
#' veupathUtils::VariableMetadata(
#' variableClass = veupathUtils::VariableClass(value = 'native'),
#' variableSpec = veupathUtils::VariableSpec(variableId = 'xvar', entityId = 'entity'),
#' plotReference = veupathUtils::PlotReference(value = 'xAxis'),
#' dataType = veupathUtils::DataType(value = 'STRING'),
#' dataShape = veupathUtils::DataShape(value = 'CATEGORICAL')
#' ),
#' veupathUtils::VariableMetadata(
#' variableClass = veupathUtils::VariableClass(value = 'native'),
#' variableSpec = veupathUtils::VariableSpec(variableId = 'overlay', entityId = 'entity'),
#' plotReference = veupathUtils::PlotReference(value = 'overlay'),
#' dataType = veupathUtils::DataType(value = 'STRING'),
#' dataShape = veupathUtils::DataShape(value = 'CATEGORICAL')
#' )
#' )
#'
#' viewport <- list('xMin'=min(df$xvar), 'xMax'=max(df$xvar))
#'
#' # Returns a data table with plot-ready data
#' dt <- histogram.dt(df, map, binWidth=0.3, value='count', barmode='stack', viewport=viewport)
#' @export
histogram.dt <- function(data,
variables,
binWidth = NULL,
value = c('count', 'proportion'),
binReportValue = c('binWidth', 'numBins'),
barmode = c('stack', 'overlay'),
viewport = NULL,
overlayValues = NULL,
sampleSizes = c(TRUE, FALSE),
completeCases = c(TRUE, FALSE),
evilMode = c('noVariables', 'allVariables', 'strataVariables'),
verbose = c(TRUE, FALSE)) {
value <- veupathUtils::matchArg(value)
barmode <- veupathUtils::matchArg(barmode)
binReportValue <- veupathUtils::matchArg(binReportValue)
sampleSizes <- veupathUtils::matchArg(sampleSizes)
completeCases <- veupathUtils::matchArg(completeCases)
evilMode <- veupathUtils::matchArg(evilMode)
verbose <- veupathUtils::matchArg(verbose)
if (!'data.table' %in% class(data)) {
data.table::setDT(data)
}
xVM <- veupathUtils::findVariableMetadataFromPlotRef(variables, 'xAxis')
collectionVM <- veupathUtils::findCollectionVariableMetadata(variables)
if (is.null(xVM) & is.null(collectionVM)) {
stop("Must provide x-axis variable for plot type histogram.")
} else if (is.null(collectionVM)) {
dataType <- xVM@dataType@value
} else {
dataType <- collectionVM@dataType@value
}
if (dataType %in% c('NUMBER', 'INTEGER') & !is.null(binWidth)) {
binWidth <- suppressWarnings(as.numeric(binWidth))
if (is.na(binWidth)) {
stop("binWidth must be numeric for histograms of numeric values.")
}
}
# Handle collectionVars
if (!is.null(collectionVM)) {
if (!collectionVM@plotReference@value %in% c('overlay', 'facet1', 'facet2')) stop('Collection variable PlotReference must be either overlay, facet1, or facet2 for histogram.')
}
.histo <- newHistogramPD(.dt = data,
variables = variables,
viewport = viewport,
binWidth = binWidth,
binReportValue = binReportValue,
value = value,
barmode = barmode,
overlayValues = overlayValues,
sampleSizes = sampleSizes,
completeCases = completeCases,
evilMode = evilMode,
verbose = verbose)
.histo <- validateHistogramPD(.histo, verbose)
veupathUtils::logWithTime(paste('New histogram object created with parameters viewport min =', viewport$xMin,
', viewport max =', viewport$xMax,
', binWidth =', binWidth,
', binReportValue =', binReportValue,
', value =', value,
', barmode =', barmode,
', sampleSizes = ', sampleSizes,
', completeCases = ', completeCases,
', evilMode =', evilMode,
', verbose =', verbose), verbose)
return(.histo)
}
#' Histogram data file
#'
#' This function returns the name of a json file containing
#' plot-ready data with one row per group (per panel). Columns
#' 'x' and 'y' contain the bin label and count respectively.
#' Column 'group' and 'panel' specify the group the series data
#' belongs to.
#'
#' @section Evil Mode:
#' An `evilMode` exists. It will do the following: \cr
#' - when `strataVariables` it will return 'no data' as a regular value for strata vars but will discard such cases for the axes vars. \cr
#' - when `allVariables` it will return 'no data' as a regular value for all variables. \cr
#' - when `noVariables` it will do the sensible thing and return complete cases only. \cr
#' - not return statsTables \cr
#' - allow smoothed means and agg values etc over axes values where we have no data for the strata vars \cr
#' - return a total count of plotted incomplete cases \cr
#' - represent missingness poorly, conflate the stories of completeness and missingness, mislead you and steal your soul \cr
#' @param data data.frame to make plot-ready data for
#' @param variables veupathUtils::VariableMetadataList
#' @param binWidth numeric value indicating width of bins, character (ex: 'year') if xaxis is a date
#' @param value String indicating how to calculate y-values ('count, 'proportion')
#' @param binReportValue String indicating if number of bins or bin width used should be returned
#' @param barmode String indicating if bars should be stacked or overlaid ('stack', 'overlay')
#' @param viewport List of min and max values to consider as the range of data
#' @param overlayValues veupathUtils::BinList providing overlay values of interest
#' @param sampleSizes boolean indicating if sample sizes should be computed
#' @param completeCases boolean indicating if complete cases should be computed
#' @param evilMode String indicating how evil this plot is ('strataVariables', 'allVariables', 'noVariables')
#' @param verbose boolean indicating if timed logging is desired
#' @return character name of json file containing plot-ready data
#' @importFrom jsonlite unbox
#' @examples
#' # Construct example data
#' df <- data.table('entity.xvar' = rnorm(100),
#' 'entity.overlay' = sample(c('red','green','blue'), 100, replace=T), stringsAsFactors = F)
#'
#' # Create VariableMetadataList that specifies variable role in the plot and supplies variable metadata
#' variables <- veupathUtils::VariableMetadataList(
#' veupathUtils::VariableMetadata(
#' variableClass = veupathUtils::VariableClass(value = 'native'),
#' variableSpec = veupathUtils::VariableSpec(variableId = 'xvar', entityId = 'entity'),
#' plotReference = veupathUtils::PlotReference(value = 'xAxis'),
#' dataType = veupathUtils::DataType(value = 'STRING'),
#' dataShape = veupathUtils::DataShape(value = 'CATEGORICAL')
#' ),
#' veupathUtils::VariableMetadata(
#' variableClass = veupathUtils::VariableClass(value = 'native'),
#' variableSpec = veupathUtils::VariableSpec(variableId = 'overlay', entityId = 'entity'),
#' plotReference = veupathUtils::PlotReference(value = 'overlay'),
#' dataType = veupathUtils::DataType(value = 'STRING'),
#' dataShape = veupathUtils::DataShape(value = 'CATEGORICAL')
#' )
#' )
#'
#' viewport <- list('xMin'=min(df$xvar), 'xMax'=max(df$xvar))
#'
#' # Returns the name of a json file
#' histogram(df, map, binWidth=0.3, value='count', barmode='stack', viewport=viewport)
#' @export
histogram <- function(data,
variables,
binWidth = NULL,
value = c('count', 'proportion'),
binReportValue = c('binWidth', 'numBins'),
barmode = c('stack', 'overlay'),
viewport = NULL,
overlayValues = NULL,
sampleSizes = c(TRUE, FALSE),
completeCases = c(TRUE, FALSE),
evilMode = c('noVariables', 'allVariables', 'strataVariables'),
verbose = c(TRUE, FALSE)) {
verbose <- veupathUtils::matchArg(verbose)
.histo <- histogram.dt(data = data,
variables = variables,
binWidth = binWidth,
value = value,
binReportValue = binReportValue,
barmode = barmode,
viewport = viewport,
overlayValues = overlayValues,
sampleSizes = sampleSizes,
completeCases = completeCases,
evilMode = evilMode,
verbose = verbose)
outFileName <- writeJSON(.histo, evilMode, 'histogram', verbose)
return(outFileName)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.