getPBLSGM_Random <- function(dat, T_records, traj_var, t_var, res_ratio = rep(4, 2), rho = rep(0.1, 2), btw_rho = rep(0.1, 1), btw_res = rep(0.3, 1),
rho_gamma = list(c(rep(0, 3)), c(rep(0, 3))), btw_rho_gamma = list(c(rep(0, 3))), btw_gamma = rep(0, 1), starts = NA,
loc = 1, scale = 0.25, extraTries = NA, original = T, paraNames = NA){
if (I(original & any(is.na(paraNames)))){
print("Please enter the original parameters if want to obtain them!")
break
}
nT <- rep(0, length(traj_var))
if (any(is.na(starts))){
mug <- psigg <- rep(0, length(traj_var))
uni_residual <- list();
uni_mean0.s <- uni_var0 <- uni_grad0 <- list()
### Obtain estimates from the reduced model
reduced_model <- getPBLSGM_Fixed(dat = dat, T_records = T_records, traj_var = traj_var, t_var = t_var, res_ratio = res_ratio, rho = rho,
btw_rho = btw_rho, btw_res = btw_res, original = F)
mug <- summary(reduced_model)$parameters$Estimate[c(grep("muknot", summary(reduced_model)$parameters$name))]
for (traj in 1:length(traj_var)){
nT[traj] <- length(T_records[[traj]])
### Mean vector (in the reparameterized framework)
uni_mean0.s[[length(uni_mean0.s) + 1]] <- c(mxEvalByName(paste0("mean_s", traj_var[traj]), model = reduced_model), mug[traj])
dat_time <- dat[, paste0(t_var, T_records[[traj]])]
mean_time <- apply(dat_time, 2, mean)
for (j in 1:length(mean_time)){
if (mean_time[j] <= mug[traj] & mean_time[j + 1] >= mug[traj]){
psigg[traj] <- var(apply(dat_time[, c(j, j + 1)], 1, mean))
stop
}
}
### var-cov matrix (in the original framework)
###################
uni_var0[[length(uni_var0) + 1]] <- matrix(0, nrow = 4, ncol = 4)
uni_var0[[length(uni_var0)]][1:3, 1:3] <- mxEvalByName(paste0("psi", traj_var[traj]), model = reduced_model)
uni_var0[[length(uni_var0)]][4, 4] <- psigg[traj]
uni_var0[[length(uni_var0)]][1, 4] <- uni_var0[[length(uni_var0)]][4, 1] <-
rho_gamma[[traj]][1] * sqrt(psigg[traj] * uni_var0[[length(uni_var0)]][1, 1])
uni_var0[[length(uni_var0)]][2, 4] <- uni_var0[[length(uni_var0)]][4, 2] <-
rho_gamma[[traj]][2] * sqrt(psigg[traj] * uni_var0[[length(uni_var0)]][2, 2])
uni_var0[[length(uni_var0)]][3, 4] <- uni_var0[[length(uni_var0)]][4, 3] <-
rho_gamma[[traj]][3] * sqrt(psigg[traj] * uni_var0[[length(uni_var0)]][3, 3])
uni_grad0[[length(uni_grad0) + 1]] <- matrix(c(1, mug[traj], 0, mxEvalByName(paste0("mean", traj_var[traj]), model = reduced_model)[2],
0, 0.5, 0.5, 0,
0, -0.5, 0.5, 0,
0, 0, 0, 1), nrow = 4, byrow = T)
uni_residual[[length(uni_residual) + 1]] <- reduced_model$S$values[(traj - 1) * nT[traj] + 1, (traj - 1) * nT[traj] + 1]
}
multi_var0 <- as.matrix(Matrix::bdiag(uni_var0))
multi_grad0 <- as.matrix(Matrix::bdiag(uni_grad0))
multi_residuals <- as.matrix(Matrix::bdiag(uni_residual))
for (traj_i in 1:(length(traj_var) - 1)){
for (traj_j in traj_i:(length(traj_var) - 1)){
reduced_cor <- mxEvalByName(paste0("psi", traj_var[traj_i], traj_var[traj_j + 1]), model = reduced_model)
multi_var0[((traj_i - 1) * 4 + 1):((traj_i - 1) * 4 + 4), (traj_j * 4 + 1):(traj_j * 4 + 4)] <-
matrix(c(reduced_cor[1, ], btw_rho_gamma[[traj_i]][1] * sqrt(multi_var0[(traj_i - 1) * 4 + 1, (traj_i - 1) * 4 + 1] * psigg[traj_j + 1]),
reduced_cor[2, ], btw_rho_gamma[[traj_i]][2] * sqrt(multi_var0[(traj_i - 1) * 4 + 2, (traj_i - 1) * 4 + 2] * psigg[traj_j + 1]),
reduced_cor[3, ], btw_rho_gamma[[traj_i]][3] * sqrt(multi_var0[(traj_i - 1) * 4 + 3, (traj_i - 1) * 4 + 3] * psigg[traj_j + 1]),
btw_rho_gamma[[traj_i]][1] * sqrt(multi_var0[traj_j * 4 + 1, traj_j * 4 + 1] * psigg[traj_i]),
btw_rho_gamma[[traj_i]][2] * sqrt(multi_var0[traj_j * 4 + 2, traj_j * 4 + 2] * psigg[traj_i]),
btw_rho_gamma[[traj_i]][3] * sqrt(multi_var0[traj_j * 4 + 3, traj_j * 4 + 3] * psigg[traj_i]),
btw_gamma[traj_i] * sqrt(psigg[traj_i] * psigg[traj_j + 1])), byrow = T, nrow = 4)
multi_residuals[traj_i, (traj_j + 1)] <- reduced_model$S$values[((traj_i - 1) * nT[traj_i] + 1), (traj_j * nT[traj_j] + 1)]
}
}
multi_var0.s <- multi_grad0 %*% multi_var0 %*% t(multi_grad0)
starts <- list(uni_mean0.s, multi_var0.s, multi_residuals)
}
### Define manifest variables
traj_list <- list()
for (traj in 1:length(traj_var)){
traj_list[[length(traj_list) + 1]] <- paste0(traj_var[traj], T_records[[traj]])
}
manifests <- unlist(traj_list)
### Define latent variables
latents <- paste0(rep(c("eta0s", "eta1s", "eta2s", "delta"), length(traj_var)), rep(traj_var, each = 4))
outDef <- outLoads1 <- outLoads2 <- outLoads3 <- outDef_L <- outLoads1_L <- outLoads2_L <- outLoads3_L <- list()
loadings1 <- loadings2 <- loadings3 <- loadings4 <- gf_mean <- gamma_mean <- residual_var <- residual_cor <- list()
func_L <- grad_L <- mean_s_L <- psi_s_L <- psi_btw_s_L <- mean_L <- psi_L <- psi_btw_L <- list()
gf_var_label <- gf_cov_label <- list()
for (traj in 1:length(traj_var)){
for (j in T_records[[traj]]){
outDef[[j]] <- mxMatrix("Full", 1, 1, free = F, labels = paste0("data.", t_var[traj], j),
name = paste0(traj_var[traj], "t", j))
outLoads1[[j]] <- mxAlgebraFromString(paste0(traj_var[traj], "t", j, " - mug", traj_var[traj]),
name = paste0("L1", j, traj_var[traj]))
outLoads2[[j]] <- mxAlgebraFromString(paste0("abs(", traj_var[traj], "t", j, " - mug", traj_var[traj], ")"),
name = paste0("L2", j, traj_var[traj]))
outLoads3[[j]] <- mxAlgebraFromString(paste0("-mueta2s", traj_var[traj], " * (", traj_var[traj], "t", j, " - mug",
traj_var[traj], ")/abs(", traj_var[traj], "t", j,
" - mug", traj_var[traj], ") - mueta2s", traj_var[traj]),
name = paste0("L3", j, traj_var[traj]))
}
outDef_L[[length(outDef_L) + 1]] <- outDef
outLoads1_L[[length(outLoads1_L) + 1]] <- outLoads1
outLoads2_L[[length(outLoads2_L) + 1]] <- outLoads2
outLoads3_L[[length(outLoads3_L) + 1]] <- outLoads3
outDef <- outLoads1 <- outLoads2 <- outLoads3 <- list()
#### Define factor loadings from latent variables to manifests
loadings1[[length(loadings1) + 1]] <- mxPath(from = paste0("eta0s", traj_var[traj]), to = traj_list[[traj]],
arrows = 1, free = F, values = 1)
loadings2[[length(loadings2) + 1]] <- mxPath(from = paste0("eta1s", traj_var[traj]), to = traj_list[[traj]],
arrows = 1, free = F, values = 0,
labels = paste0("L1", T_records[[traj]], traj_var[traj], "[1,1]"))
loadings3[[length(loadings3) + 1]] <- mxPath(from = paste0("eta2s", traj_var[traj]), to = traj_list[[traj]],
arrows = 1, free = F, values = 0,
labels = paste0("L2", T_records[[traj]], traj_var[traj], "[1,1]"))
loadings4[[length(loadings4) + 1]] <- mxPath(from = paste0("delta", traj_var[traj]), to = traj_list[[traj]],
arrows = 1, free = F, values = 0,
labels = paste0("L3", T_records[[traj]], traj_var[traj], "[1,1]"))
#### Define means of outcome-specific growth factors
gf_mean[[length(gf_mean) + 1]] <- mxPath(from = "one", to = paste0(c("eta0s", "eta1s", "eta2s"), traj_var[traj]),
arrows = 1, free = T, values = starts[[1]][[traj]][1:3],
labels = paste0(c("mueta0s", "mueta1s", "mueta2s"), traj_var[traj]))
#### Add additional parameter and constraints
gamma_mean[[length(gamma_mean) + 1]] <- mxMatrix("Full", 1, 1, free = T, values = starts[[1]][[traj]][4],
labels = paste0("muknot_", traj_var[traj]),
name = paste0("mug", traj_var[traj]))
#### Define the variances of residuals
residual_var[[length(residual_var) + 1]] <- mxPath(from = traj_list[[traj]], to = traj_list[[traj]], arrows = 2, free = T,
values = starts[[3]][traj, traj],
labels = paste0("residuals", traj_var[traj]))
#### Define transformed function
func_L[[length(func_L) + 1]] <- mxAlgebraFromString(paste0("rbind(cbind(1, -mug", traj_var[traj], ", mug", traj_var[traj], ", 0), ",
"cbind(0, 1, -1, 0), ", "cbind(0, 1, 1, 0)", ", cbind(0, 0, 0, 1))"),
name = paste0("func", traj_var[traj]))
grad_L[[length(grad_L) + 1]] <- mxAlgebraFromString(paste0("rbind(cbind(1, -mug", traj_var[traj], ", mug", traj_var[traj], ", 0), ",
"cbind(0, 1, -1, 0), ", "cbind(0, 1, 1, 0)", ", cbind(0, 0, 0, 1))"),
name = paste0("grad", traj_var[traj]))
#### Define the outcome-specific growth factor mean vector in the reparameterized framework
mean_s_L[[length(mean_s_L) + 1]] <- mxAlgebraFromString(paste0("rbind(mueta0s", traj_var[traj], ", mueta1s", traj_var[traj],
", mueta2s", traj_var[traj], ")"),
name = paste0("mean_s", traj_var[traj]))
#### Define the outcome-specific growth factor var-cov matrix in the reparameterized framework
psi_s_L[[length(psi_s_L) + 1]] <- mxAlgebraFromString(paste0("rbind(cbind(psi0s0s", traj_var[traj], traj_var[traj],
", psi0s1s", traj_var[traj], traj_var[traj],
", psi0s2s", traj_var[traj], traj_var[traj],
", psi0sg", traj_var[traj], traj_var[traj], "), ",
"cbind(psi0s1s", traj_var[traj], traj_var[traj],
", psi1s1s", traj_var[traj], traj_var[traj],
", psi1s2s", traj_var[traj], traj_var[traj],
", psi1sg", traj_var[traj], traj_var[traj], "), ",
"cbind(psi0s2s", traj_var[traj], traj_var[traj],
", psi1s2s", traj_var[traj], traj_var[traj],
", psi2s2s", traj_var[traj], traj_var[traj],
", psi2sg", traj_var[traj], traj_var[traj], "), ",
"cbind(psi0sg", traj_var[traj], traj_var[traj],
", psi1sg", traj_var[traj], traj_var[traj],
", psi2sg", traj_var[traj], traj_var[traj],
", psigg", traj_var[traj], traj_var[traj], "))"),
name = paste0("psi_s", traj_var[traj]))
#### Define the outcome-specific growth factor mean vector in the original framework
mean_L[[length(mean_L) + 1]] <- mxAlgebraFromString(paste0("func", traj_var[traj], "[1:3, 1:3] %*% mean_s", traj_var[traj]),
name = paste0("mean", traj_var[traj]))
#### Define the outcome-specific growth factor var-cov matrix in the original framework
psi_L[[length(psi_L) + 1]] <- mxAlgebraFromString(paste0("grad", traj_var[traj], " %*% psi_s", traj_var[traj],
" %*% t(grad", traj_var[traj], ")"),
name = paste0("psi", traj_var[traj]))
#### Define var-cov of outcome-specific growth factors
gf_var_label[[length(gf_var_label) + 1]] <- matrix(paste0("psi", c("0s0s", "0s1s", "0s2s", "0sg", "1s0s", "1s1s", "1s2s", "1sg",
"2s0s", "2s1s", "2s2s", "2sg", "0sg", "1sg", "2sg", "gg"),
traj_var[traj], traj_var[traj]), byrow = T, nrow = 4, ncol = 4)
}
for (traj_i in 1:(length(traj_var) - 1)){
for (traj_j in traj_i:(length(traj_var) - 1)){
#### Define the between-outcome growth factor var-cov matrix in the reparameterized framework
psi_btw_s_L[[length(psi_btw_s_L) + 1]] <- mxAlgebraFromString(paste0("rbind(cbind(psi0s0s", traj_var[traj_i], traj_var[traj_j + 1],
", psi0s1s", traj_var[traj_i], traj_var[traj_j + 1],
", psi0s2s", traj_var[traj_i], traj_var[traj_j + 1],
", psi0sg", traj_var[traj_i], traj_var[traj_j + 1], "), ",
"cbind(psi0s1s", traj_var[traj_i], traj_var[traj_j + 1],
", psi1s1s", traj_var[traj_i], traj_var[traj_j + 1],
", psi1s2s", traj_var[traj_i], traj_var[traj_j + 1],
", psi1sg", traj_var[traj_i], traj_var[traj_j + 1], "), ",
"cbind(psi0s2s", traj_var[traj_i], traj_var[traj_j + 1],
", psi1s2s", traj_var[traj_i], traj_var[traj_j + 1],
", psi2s2s", traj_var[traj_i], traj_var[traj_j + 1],
", psi2sg", traj_var[traj_i], traj_var[traj_j + 1], "), ",
"cbind(psig0s", traj_var[traj_i], traj_var[traj_j + 1],
", psig1s", traj_var[traj_i], traj_var[traj_j + 1],
", psig2s", traj_var[traj_i], traj_var[traj_j + 1],
", psigg", traj_var[traj_i], traj_var[traj_j + 1], "))"),
name = paste0("psi_s", traj_var[traj_i], traj_var[traj_j + 1]))
#### Define the between-outcome growth factor var-cov matrix in the reparameterized framework
psi_btw_L[[length(psi_btw_L) + 1]] <- mxAlgebraFromString(paste0("grad", traj_var[traj_i], " %*% psi_s",
traj_var[traj_i], traj_var[traj_j + 1],
" %*% t(grad", traj_var[traj_i + 1], ")"),
name = paste0("psi", traj_var[traj_i], traj_var[traj_j + 1]))
#### Define the covariances of residuals
if (setequal(substr(traj_list[[traj_i]], 2, 2), substr(traj_list[[traj_j + 1]], 2, 2))){
residual_cor[[length(residual_cor) + 1]] <- mxPath(from = traj_list[[traj_i]], to = traj_list[[traj_j + 1]],
arrows = 2, free = T, values = starts[[3]][traj_i, traj_j + 1],
labels = paste0("residuals", traj_var[traj_i], traj_var[traj_j + 1]))
}
else{
T_common <- Reduce(intersect, list(substr(traj_list[[traj_i]], 2, 2), substr(traj_list[[traj_j + 1]], 2, 2)))
residual_cor[[length(residual_cor) + 1]] <- mxPath(from = paste0(traj_var[traj_i], T_common),
to = paste0(traj_var[traj_j + 1], T_common),
arrows = 2, free = T, values = starts[[3]][traj_i, traj_j + 1],
labels = paste0("residuals", traj_var[traj_i], traj_var[traj_j + 1]))
}
gf_cov_label[[traj_i + traj_j - 1]] <- matrix(paste0("psi", c("0s0s", "0s1s", "0s2s", "0sg", "1s0s", "1s1s", "1s2s", "1sg",
"2s0s", "2s1s", "2s2s", "2sg", "g0s", "g1s", "g2s", "gg"),
traj_var[traj_i], traj_var[traj_j + 1]), byrow = T, nrow = 4, ncol = 4)
}
}
multi_label <- matrix(NA, nrow = length(latents), ncol = length(latents))
for (traj in 1:length(traj_var)){
multi_label[((traj - 1) * 4 + 1):((traj - 1) * 4 + 4), ((traj - 1) * 4 + 1):((traj - 1) * 4 + 4)] <- gf_var_label[[traj]]
}
for (traj_i in 1:(length(traj_var) - 1)){
for (traj_j in traj_i:(length(traj_var) - 1)){
multi_label[((traj_i - 1) * 4 + 1):((traj_i - 1) * 4 + 4), (traj_j * 4 + 1):(traj_j * 4 + 4)] <- gf_cov_label[[traj_i + traj_j - 1]]
}
}
### Create a mxModel object
model_mx <- mxModel("Parallel Bilinear Spline Growth Model with Random Knots", type = "RAM",
manifestVars = manifests, latentVars = latents,
mxData(observed = dat, type = "raw"),
#### Define var-cov matrix of latent variables
mxPath(from = latents, to = latents, arrows = 2, connect = "unique.pairs",
free = T, values = t(starts[[2]])[row(t(starts[[2]])) >= col(t(starts[[2]]))],
labels = t(multi_label)[row(t(multi_label)) >= col(t(multi_label))]),
outDef_L, outLoads1_L, outLoads2_L, outLoads3_L, loadings1, loadings2, loadings3, loadings4,
gf_mean, gamma_mean, residual_var, residual_cor, func_L, grad_L, mean_s_L, psi_s_L, psi_btw_s_L, mean_L, psi_L, psi_btw_L)
if (!is.na(extraTries)){
model <- mxTryHard(model_mx, extraTries = extraTries, OKstatuscodes = 0, loc = loc, scale = scale)
}
else{
model <- mxRun(model_mx)
}
if(original){
model.para <- summary(model)$parameters[, c(1, 5, 6)]
mean_est <- mean_se <- psi_est <- psi_se <- psi_btw_est <- psi_btw_se <- outcome_est <- outcome_se <- btw_est <- btw_se <- list()
mug <- model.para$Estimate[c(grep("muknot", model.para$name))]
mug_se <- model.para$Std.Error[c(grep("muknot", model.para$name))]
for (traj in 1:length(traj_var)){
mean_est[[length(mean_est) + 1]] <- c(mxEvalByName(paste0("mean", traj_var[traj]), model = model), mug[traj])
mean_se[[length(mean_se) + 1]] <- c(mxSE(paste0("mean", traj_var[traj]), model, forceName = T), mug_se[traj])
psi_est[[length(psi_est) + 1]] <- mxEvalByName(paste0("psi", traj_var[traj]), model = model)
psi_se[[length(psi_se) + 1]] <- mxSE(paste0("psi", traj_var[traj]), model, forceName = T)
outcome_est[[length(outcome_est) + 1]] <- c(unlist(mean_est[[traj]]), psi_est[[traj]][row(psi_est[[traj]]) >= col(psi_est[[traj]])])
outcome_se[[length(outcome_se) + 1]] <- c(unlist(mean_se[[traj]]), psi_se[[traj]][row(psi_se[[traj]]) >= col(psi_se[[traj]])])
}
for (traj in 1:(length(traj_var) - 1)){
psi_btw_est[[length(psi_btw_est) + 1]] <- mxEvalByName(paste0("psi", traj_var[traj], traj_var[traj + 1]), model = model)
psi_btw_se[[length(psi_btw_se) + 1]] <- mxSE(paste0("psi", traj_var[traj], traj_var[traj + 1]), model, forceName = T)
btw_est[[length(btw_est) + 1]] <- unlist(c(psi_btw_est))
btw_se[[length(btw_se) + 1]] <- unlist(c(psi_btw_se))
}
model.est <- round(c(unlist(outcome_est), unlist(btw_est), model.para[grep("residuals", model.para$name), 2]), 4)
model.se <- round(c(unlist(outcome_se), unlist(btw_se), model.para[grep("residuals", model.para$name), 3]), 4)
estimate_out <- data.frame(Name = paraNames, Estimate = model.est, SE = model.se)
return(list(model, estimate_out))
}
else{
return(model)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.