pick_dims | R Documentation |
Allow the user to choose from 4 different methods ("avg_inertia", "maj_inertia", "scree_plot" and "elbow_rule") to estimate the number of dimensions that best represent the data.
pick_dims(
obj,
mat = NULL,
method = "scree_plot",
reps = 3,
python = FALSE,
return_plot = FALSE,
...
)
## S4 method for signature 'cacomp'
pick_dims(
obj,
mat = NULL,
method = "scree_plot",
reps = 3,
python = FALSE,
return_plot = FALSE,
...
)
## S4 method for signature 'Seurat'
pick_dims(
obj,
mat = NULL,
method = "scree_plot",
reps = 3,
python = FALSE,
return_plot = FALSE,
...,
assay = SeuratObject::DefaultAssay(obj),
slot = "counts"
)
## S4 method for signature 'SingleCellExperiment'
pick_dims(
obj,
mat = NULL,
method = "scree_plot",
reps = 3,
python = FALSE,
return_plot = FALSE,
...,
assay = "counts"
)
obj |
A "cacomp" object as outputted from |
mat |
A numeric matrix. For sequencing a count matrix, gene expression values with genes in rows and samples/cells in columns. Should contain row and column names. |
method |
String. Either "scree_plot", "avg_inertia", "maj_inertia" or "elbow_rule" (see Details section). Default "scree_plot". |
reps |
Integer. Number of permutations to perform when choosing "elbow_rule". Default 3. |
python |
DEPRACTED. A logical value indicating whether to use singular value
decomposition from the python package torch.
This implementation dramatically speeds up computation compared to |
return_plot |
TRUE/FALSE. Whether a plot should be returned when choosing "elbow_rule". Default FALSE. |
... |
Arguments forwarded to methods. |
assay |
Character. The assay from which to extract the count matrix for SVD, e.g. "RNA" for Seurat objects or "counts"/"logcounts" for SingleCellExperiments. |
slot |
Character. Data slot of the Seurat assay. E.g. "data" or "counts". Default "counts". |
"avg_inertia" calculates the number of dimensions in which the inertia is above the average inertia.
"maj_inertia" calculates the number of dimensions in which cumulatively explain up to 80% of the total inertia.
"scree_plot" plots a scree plot.
"elbow_rule" formalization of the commonly used elbow rule. Permutes the
rows for each column and reruns cacomp()
for a total of reps
times.
The number of relevant dimensions is obtained from the point where the
line for the explained inertia of the permuted data intersects with the
actual data.
For avg_inertia
, maj_inertia
and elbow_rule
(when return_plot=FALSE
)
returns an integer, indicating the suggested number of dimensions to use.
scree_plot
returns a ggplot object.
elbow_rule
(for return_plot=TRUE
) returns a list with two elements:
"dims" contains the number of dimensions and "plot" a ggplot.
# Simulate counts
cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:20, 50, replace = TRUE))
rownames(cnts) <- paste0("gene_", 1:nrow(cnts))
colnames(cnts) <- paste0("cell_", 1:ncol(cnts))
# Run correspondence analysis.
ca <- cacomp(obj = cnts)
# pick dimensions with the elbow rule. Returns list.
set.seed(2358)
pd <- pick_dims(obj = ca,
mat = cnts,
method = "elbow_rule",
return_plot = TRUE,
reps = 10)
pd$plot
ca_sub <- subset_dims(ca, dims = pd$dims)
# pick dimensions which explain cumulatively >80% of total inertia.
# Returns vector.
pd <- pick_dims(obj = ca,
method = "maj_inertia")
ca_sub <- subset_dims(ca, dims = pd)
################################
# pick_dims for Seurat objects #
################################
library(SeuratObject)
set.seed(1234)
# Simulate counts
cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:20, 50, replace = TRUE))
rownames(cnts) <- paste0("gene_", 1:nrow(cnts))
colnames(cnts) <- paste0("cell_", 1:ncol(cnts))
# Create Seurat object
seu <- CreateSeuratObject(counts = cnts)
# run CA and save in dim. reduction slot.
seu <- cacomp(seu, return_input = TRUE, assay = "RNA", slot = "counts")
# pick dimensions
pd <- pick_dims(obj = seu,
method = "maj_inertia",
assay = "RNA",
slot = "counts")
##############################################
# pick_dims for SingleCellExperiment objects #
##############################################
library(SingleCellExperiment)
set.seed(1234)
# Simulate counts
cnts <- mapply(function(x){rpois(n = 500, lambda = x)},
x = sample(1:20, 50, replace = TRUE))
rownames(cnts) <- paste0("gene_", 1:nrow(cnts))
colnames(cnts) <- paste0("cell_", 1:ncol(cnts))
# Create SingleCellExperiment object
sce <- SingleCellExperiment(assays=list(counts=cnts))
# run CA and save in dim. reduction slot.
sce <- cacomp(sce, return_input = TRUE, assay = "counts")
# pick dimensions
pd <- pick_dims(obj = sce,
method = "maj_inertia",
assay = "counts")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.