View source: R/MSstatsConvert_core_functions.R
MSstatsPreprocess | R Documentation |
Preprocess outputs from MS signal processing tools for analysis with MSstats
MSstatsPreprocess(
input,
annotation,
feature_columns,
remove_shared_peptides = TRUE,
remove_single_feature_proteins = TRUE,
feature_cleaning = list(remove_features_with_few_measurements = TRUE,
summarize_multiple_psms = max),
score_filtering = list(),
exact_filtering = list(),
pattern_filtering = list(),
columns_to_fill = list(),
aggregate_isotopic = FALSE,
...
)
input |
data.table processed by the MSstatsClean function. |
annotation |
annotation file generated by a signal processing tool. |
feature_columns |
character vector of names of columns that define spectral features. |
remove_shared_peptides |
logical, if TRUE shared peptides will be removed. |
remove_single_feature_proteins |
logical, if TRUE, proteins that only have one feature will be removed. |
feature_cleaning |
named list with maximum two (for |
score_filtering |
a list of named lists that specify filtering options. Details are provided in the vignette. |
exact_filtering |
a list of named lists that specify filtering options. Details are provided in the vignette. |
pattern_filtering |
a list of named lists that specify filtering options. Details are provided in the vignette. |
columns_to_fill |
a named list of scalars. If provided, columns with
names defined by the names of this list and values corresponding to its elements
will be added to the output |
aggregate_isotopic |
logical. If |
... |
additional parameters to |
data.table
evidence_path = system.file("tinytest/raw_data/MaxQuant/mq_ev.csv",
package = "MSstatsConvert")
pg_path = system.file("tinytest/raw_data/MaxQuant/mq_pg.csv",
package = "MSstatsConvert")
evidence = read.csv(evidence_path)
pg = read.csv(pg_path)
imported = MSstatsImport(list(evidence = evidence, protein_groups = pg),
"MSstats", "MaxQuant")
cleaned_data = MSstatsClean(imported, protein_id_col = "Proteins")
annot_path = system.file("tinytest/raw_data/MaxQuant/annotation.csv",
package = "MSstatsConvert")
mq_annot = MSstatsMakeAnnotation(cleaned_data, read.csv(annot_path),
Run = "Rawfile")
# To filter M-peptides and oxidatin peptides
m_filter = list(col_name = "PeptideSequence", pattern = "M",
filter = TRUE, drop_column = FALSE)
oxidation_filter = list(col_name = "Modifications", pattern = "Oxidation",
filter = TRUE, drop_column = TRUE)
msstats_format = MSstatsPreprocess(
cleaned_data, mq_annot,
feature_columns = c("PeptideSequence", "PrecursorCharge"),
columns_to_fill = list(FragmentIon = NA, ProductCharge = NA),
pattern_filtering = list(oxidation = oxidation_filter, m = m_filter)
)
# Output in the standard MSstats format
head(msstats_format)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.