IMIS_: Incremental Mixture Importance Sampling (IMIS) - amended...

View source: R/IMIS_.R

IMIS_R Documentation

Incremental Mixture Importance Sampling (IMIS) - amended version

Description

Incremental Mixture Importance Sampling (IMIS) - amended version

Usage

IMIS_(
  B = 1000,
  B.re = 3000,
  number_k = 100,
  D = 0,
  sample.prior = .sample.prior_,
  priors = .priors_,
  prior = .prior_,
  likelihood = .likelihood_,
  .l_params_,
  .func_,
  .args_,
  .l_targets_,
  .transform_
)

Arguments

B

Sample size at each IMIS iteration

B.re

Desired posterior sample size

number_k

Maximum number of iterations in IMIS

D

use optimizer >= 1, do not use = 0

sample.prior

Sample from prior distribution

priors

Function that calculates prior densities (many sets of parameters at a time)

prior

Function that calculates prior densities (one set of parameters at a time)

likelihood

A function that calculates the likelihood

.l_params_

A list with parameters information

.func_

A function defining the model to be calibrated

.args_

A list of arguments passed to the model function.

.l_targets_

A list containing a vector of targets' names, a vector of targets' weights, a vector of targets' distributions, and a table for each target that contains the values (column name 'value') and standard errors (column name 'sd') of the corresponding target.

.transform_

Logical for whether to back-transform parameters to their original scale.


W-Mohammed/calibrater documentation built on Oct. 14, 2023, 1:57 a.m.