calibR_R6 | R Documentation |
An instance of this class is expected to calibrate a user-defined model and produce summary plots/tables.
An R6::R6Class object.
calibration_model
a Decision-Analytic model under calibration
calibration_model_args
arguments passed to the calibration model
calibration_parameters
calibration parameters' data
calibration_targets
calibration targets' data
calibration_results
calibration interim results
model_interventions
model interventions to run cost-effectiveness analysis
transform_parameters
logical for whether to back transform parameters
GOF_measure_plot
log likelihood values for plot
model_predictions
simulated outputs
prior_samples
samples from parameters' priors
maximum_a_posteriori
parameter set with maximum posterior probability
PSA_samples
calibration and un-calibration parameters samples
PSA_results
PSA results
PSA_summary
PSA results' summary
PSA_summary_tables
PSA results' summary tables
simulated_targets
PSA results
plots
summary plots
new()
Sample prior distribution(s) using one or more sampling method. This function currently supports: LHS, FGS and RGS.
calibR_R6$new(.model, .args, .params, .targets, .transform, .intervs = NULL)
.model
The decision analytic model under calibration
.args
Calibration model arguments
.params
Calibration parameters
.targets
Calibration targets
.transform
Logical for whether the model will use transformed parameters. This allows some functions to back transform the parameters to their original scale before using them.
.intervs
A list containing the information about the considered interventions built into the model.
Object of class CalibrateR_R6
\dontrun{ }
sampleR()
Sample prior distribution(s) using one or more sampling method. This function currently supports: LHS, FGS and RGS.
calibR_R6$sampleR(.n_samples = 1, .sampling_method, .ssed_no = NULL)
.n_samples
An integer specifying the number of samples to be generated.
.sampling_method
The sampling method(s) to use. The function currently supports LHS, RGS, and FGS.
.ssed_no
random seed number
Executes the required sampling method and populates the "prior samples" internal object.
\dontrun{ }
calibrateR_random()
Calibrate the model using one or more random search method(s).
calibR_R6$calibrateR_random( .optim = FALSE, .maximise = TRUE, .weighted = NULL, .sample_method = "LHS", .calibration_method = "LLK", .calibration_function = NULL )
.optim
Logical for whether the function is used by an
optimisation algorithm. Default is FALSE
.
.maximise
Logical for whether the output of the function is
used in a maximising optimisation function. Default is TRUE
.
.weighted
Logical for whether the SSE was to be weighted,
default is TRUE
. The weight used by function is
1/(sd^2)
.
.sample_method
The method used to sample from the prior distribution.
.calibration_method
goodness-of-fit method name.
.calibration_function
goodness-of-fit function.
Executes the required calibration method and populates the samples internal object.
\dontrun{ }
calibrateR_directed()
Calibrate the model using one or more directed search method(s).
calibR_R6$calibrateR_directed( .gof = "LLK", .gof_func = NULL, .n_samples = 1, .max_iterations = 1000, temp = 10, trace = NULL, .calibration_method = "NM", .sample_method = "LHS", .maximise = TRUE )
.gof
Name of goodness-of-fit function, default is log-likelihood.
.gof_func
Goodness-of-fit function; if NULL (default) the
supported function defined by .gof
will be used
.n_samples
Number of Starting sets (gausses) to use.
.max_iterations
Maximum number of algorithm iterations.
temp
SANN algorithm tuning parameter.
trace
Non-negative integer. If positive, tracing information on the progress of the optimization is produced. Higher values may produce more tracing information.
.calibration_method
The calibration process.
.sample_method
The method used to sample from the prior distribution.
.maximise
Logical for whether the function is to maximise.
Executes the required calibration method and populates the samples internal object.
\dontrun{ }
calibrateR_bayesian()
Calibrate the model using one or more calibration method.
calibR_R6$calibrateR_bayesian( .b_methods = "SIR", .n_resample = 1000, .IMIS_iterations = 10, .IMIS_sample = 100, .MCMC_burnIn = 10000, .MCMC_samples = 50000, .MCMC_thin = 5, .MCMC_rerun = TRUE, .diag_ = FALSE )
.b_methods
Bayesian calibration method(s)
.n_resample
Desired number of draws from the posterior
.IMIS_iterations
Maximum number of IMIS iterations
.IMIS_sample
Positive integer for the IMIS sample size at each iteration.
.MCMC_burnIn
Positive integer for the MCMC burn-in sample.
.MCMC_samples
Positive integer for the total MCMC sample, including burn-in.
.MCMC_thin
Positive integer for the value by which MCMC results are to reduced. .MCMC_thin defines the number of samples from which the first will be retained while the rest are discarded.
.MCMC_rerun
Logical for whether to re-run MCMC using the proposal distribution covariance matrix from the first run.
.diag_
Logical for whether to print diagnostics.
Executes the required calibration method and populates the samples internal object.
\dontrun{ }
sample_PSA_values()
Sample PSA values for the calibration parameters
calibR_R6$sample_PSA_values(.calibration_methods, .PSA_samples)
.calibration_methods
Bayesian calibration method(s)
.PSA_samples
Number of PSA sets to sample
\dontrun{ }
run_PSA()
Run PSA
calibR_R6$run_PSA(.PSA_unCalib_values_ = NULL)
.PSA_unCalib_values_
PSA values for un-calibrated parameters
\dontrun{ }
summarise_PSA()
Summarise PSA results
calibR_R6$summarise_PSA()
\dontrun{ }
draw_plots()
Draw plots
calibR_R6$draw_plots( prior_sample_method = "LHS", print_pair_correlations = FALSE )
prior_sample_method
Sampling method used to generate prior samples.
print_pair_correlations
Print pair-wise correlations to console.
\dontrun{ }
draw_GOF_measure()
Plot Goodness of fit function(s)
calibR_R6$draw_GOF_measure( .engine_ = "plotly", .blank_contour_ = TRUE, .gof_ = "LLK", .percent_sampled_ = 10, .n_samples_ = 10000, .true_points_ = FALSE, .greys_ = FALSE, .scale_ = NULL, .coloring_ = "fill", .legend_ = FALSE, .zoom_ = FALSE, .x_axis_lb_ = NULL, .x_axis_ub_ = NULL, .y_axis_lb_ = NULL, .y_axis_ub_ = NULL, .save_ = FALSE, .saving_path_ = here::here(), .saving_image_dir_ = "/images/GOFs/", .saving_x_params_ = 1, .saving_image_scale_ = 2, .saving_image_width_ = 1000, .saving_image_height_ = 600 )
.engine_
String naming the plotting engine, currently "plotly".
.blank_contour_
Logical for whether to only plot blank or empty GOF contour plots.
.gof_
Goodness of fit (GOF) measure - fitness function. Either "LLK" or "SEE" for the log-likelihood and sum-of-squared-errors GOF, respectively.
.percent_sampled_
.percent_sampled_ The fraction of LHS, RGS, or FGS samples to select.
.n_samples_
Number of Grid samples to plot log likelihood
.true_points_
Logical for whether to add "True set" to plots.
.greys_
Logical for whether to use a Grey scale in the plot.
.scale_
The colour bar colour-scale. Available options are Greys, YlGnBu, Greens, YlOrRd, Bluered, RdBu, Reds, Blues, Picnic, Rainbow, Portland, Jet, Hot, Blackbody, Earth, Electric, Viridis, Cividis.
.coloring_
Which contouring is required (default fill) and options are "fill" | "heatmap" | "lines" | "none"
.legend_
Logical for whether to show a legend (default is FALSE). This parameter also controls text labels in the opposite way.
.zoom_
Logical (default FALSE) for whether to limit the resulting plot to the min() and max() of the two dimensional contour plots.
.x_axis_lb_
Lower bound of the plot's x axis.
.x_axis_ub_
Upper bound of the plot's x axis.
.y_axis_lb_
Lower bound of the plot's y axis.
.y_axis_ub_
Upper bound of the plot's y axis.
.save_
Logical for whether to save plots.
.saving_path_
String defining the path for where to save the plots.
.saving_image_dir_
String defining the sub-folder in the path where to save the plots.
.saving_x_params_
Integer or vector of integers for the rank(s) of
.saving_image_scale_
Positive integer dictating the scale at which the image is saved. Default value is 5 for images with width of 1/3 an A4 paper.
.saving_image_width_
Positive integer setting the width of the saved version of the plot. The default (1,000 px) is appropriate for an image 1/3 of the width of A4 sheet.
.saving_image_height_
Positive integer setting the height of the saved version of the plot. The default (600 px) is appropriate for an image 1/3 of the width of A4 sheet. #'
\dontrun{ }
draw_targets_plots()
Plot Targets (with or without simulated targets)
calibR_R6$draw_targets_plots( .engine_ = "ggplot2", .sim_targets_ = FALSE, .calibration_methods_ = "all", .legend_pos_ = "none", .PSA_samples_ = NULL, .PSA_unCalib_values_ = NULL, .save_ = FALSE, .saving_path_ = here::here(), .saving_image_dir_ = "/images/Targets/", .saving_image_scale_ = 2, .saving_image_width_ = 1000, .saving_image_height_ = 600, .saving_image_units_ = "px" )
.engine_
String naming the plotting engine, currently "ggplot2".
.sim_targets_
Logical (default FALSE) for whether generate then plot simulated targets. The generation of simulated targets requires the package to run the model using the sampled or identified PSA values.
.calibration_methods_
String vector naming the calibration methods for which simulated targets are to be generated. Options is either "all" (the default) or any of c("random", "directed", "bayesian").
.legend_pos_
String declaring the preferred position for the legend. Default is "bottom".
.PSA_samples_
Integer defining the maximum number of PSA values to use in plotting/generating the simulated targets.
.PSA_unCalib_values_
Tibble/table/dataframe containing the PSA draws for the parameters that are not calibrated in the object
.save_
Logical for whether to save plots.
.saving_path_
String defining the path for where to save the plots.
.saving_image_dir_
String defining the sub-folder in the path where to save the plots.
.saving_image_scale_
Positive integer dictating the scale at which the image is saved. Default value is 5 for images with width of 1/3 an A4 paper.
.saving_image_width_
Positive integer setting the width of the saved version of the plot. The default (1,000 px) is appropriate for an image 1/3 of the width of A4 sheet.
.saving_image_height_
Positive integer setting the height of the saved version of the plot. The default (600 px) is appropriate for an image 1/3 of the width of A4 sheet.
.saving_image_units_
A string (default "px") defining the units in which the width and height are provided.
\dontrun{ }
draw_distributions_plots()
Plot prior and posterior distributions
calibR_R6$draw_distributions_plots( .engine_ = "ggplot2", .bins_ = 20, .legend_pos_ = "none", .log_scaled_ = FALSE, .save_ = FALSE, .saving_path_ = here::here(), .saving_image_dir_ = "/images/Prior-posterior/", .saving_image_scale_ = 2, .saving_image_width_ = 1000, .saving_image_height_ = 600, .saving_image_units_ = "px" )
.engine_
String naming plotting package currently only supports "ggplot2".
.bins_
Numeric specifying the number of bins in the histograms.
.legend_pos_
String (default bottom) setting legend position.
.log_scaled_
Logical for whether to use log scale in the x axis.
.save_
Logical for whether to save plots.
.saving_path_
String defining the path for where to save the plots.
.saving_image_dir_
String defining the sub-folder in the path where to save the plots.
.saving_image_scale_
Positive integer dictating the scale at which the image is saved. Default value is 5 for images with width of 1/3 an A4 paper.
.saving_image_width_
Positive integer setting the width of the saved version of the plot. The default (1,000 px) is appropriate for an image 1/3 of the width of A4 sheet.
.saving_image_height_
Positive integer setting the height of the saved version of the plot. The default (600 px) is appropriate for an image 1/3 of the width of A4 sheet.
.saving_image_units_
A string (default "px") defining the units in which the width and height are provided.
\dontrun{ }
draw_PSA_summary_tables()
Draw PSA summary tables:—-
calibR_R6$draw_PSA_summary_tables( .save_ = FALSE, .saving_path_ = here::here(), .saving_data_dir_ = "/data/PSA tables/" )
.save_
Logical for whether to save tables data.
.saving_path_
String defining the path for where to save the tables data.
.saving_data_dir_
String defining the sub-folder in the path where to save the tables data.
\dontrun{ }
clone()
The objects of this class are cloneable with this method.
calibR_R6$clone(deep = FALSE)
deep
Whether to make a deep clone.
## Not run:
## ------------------------------------------------
## Method `calibR_R6$new`
## ------------------------------------------------
## Not run:
## ------------------------------------------------
## Method `calibR_R6$sampleR`
## ------------------------------------------------
## Not run:
## ------------------------------------------------
## Method `calibR_R6$calibrateR_random`
## ------------------------------------------------
## Not run:
## ------------------------------------------------
## Method `calibR_R6$calibrateR_directed`
## ------------------------------------------------
## Not run:
## ------------------------------------------------
## Method `calibR_R6$calibrateR_bayesian`
## ------------------------------------------------
## Not run:
## ------------------------------------------------
## Method `calibR_R6$sample_PSA_values`
## ------------------------------------------------
## Not run:
## ------------------------------------------------
## Method `calibR_R6$run_PSA`
## ------------------------------------------------
## Not run:
## ------------------------------------------------
## Method `calibR_R6$summarise_PSA`
## ------------------------------------------------
## Not run:
## ------------------------------------------------
## Method `calibR_R6$draw_plots`
## ------------------------------------------------
## Not run:
## ------------------------------------------------
## Method `calibR_R6$draw_GOF_measure`
## ------------------------------------------------
## Not run:
## ------------------------------------------------
## Method `calibR_R6$draw_targets_plots`
## ------------------------------------------------
## Not run:
## ------------------------------------------------
## Method `calibR_R6$draw_distributions_plots`
## ------------------------------------------------
## Not run:
## ------------------------------------------------
## Method `calibR_R6$draw_PSA_summary_tables`
## ------------------------------------------------
## Not run:
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.