View source: R/plot_fitness_helpers.R
plot_fitness_function | R Documentation |
Draw fitness function(s) contour plots
plot_fitness_function(
.engine_ = "plotly",
.l_params_ = self$calibration_parameters,
.l_gof_values_ = self$GOF_measure_plot,
.l_calibration_results_ = self$calibration_results,
.l_PSA_samples_ = self$PSA_samples,
.t_prior_samples_ = self$prior_samples$LHS,
.prior_samples_ = 1000,
.gof_ = "LLK",
.blank_ = TRUE,
.percent_sampled_ = 10,
.true_points_ = FALSE,
.greys_ = FALSE,
.scale_ = NULL,
.coloring_ = "fill",
.legend_ = FALSE,
.zoom_ = FALSE,
.x_axis_lb_ = NULL,
.x_axis_ub_ = NULL,
.y_axis_lb_ = NULL,
.y_axis_ub_ = NULL
)
.engine_ |
String specifying the plotting engine, currently supports "plotly". |
.l_params_ |
List containing information about calibration parameters, including parameters' names, distributions, and boundaries. |
.l_gof_values_ |
List containing the goodness-of-fit (GOF) values corresponding to specific parameter(s) configurations. |
.l_calibration_results_ |
List containing calibration results for each of the tested or employed calibration method. |
.l_PSA_samples_ |
List containing Probabilistic Sensitivity Analysis (PSA) values corresponding to each calibration method. |
.t_prior_samples_ |
Dataset or tibble containing prior samples. |
.prior_samples_ |
Numeric (integer) setting the number of prior samples to be added to the plot. |
.gof_ |
String identifying the name of the GOF measure used. The function currently supports "LLK" or "SSE" for log-likelihood and Sum-of-Squared-Errors fitness functions, respectively. |
.blank_ |
Logical for whether to only plot blank or empty GOF contour plots. |
.percent_sampled_ |
Numeric (double) specifying the proportion of of sets to identify as good-fitting sets by the "random" (undirected or unguided) non-Bayesian calibration methods. |
.true_points_ |
Logical for whether to show "True values" on the plot. |
.greys_ |
Logical for whether to use the "Greys" colour-scale. The .scale_ parameter overrides .greys_ if it was not NULL. |
.scale_ |
String specifying colour-scale applied to the "ploty" contour. The options are "Blackbody", "Bluered", "Blues", "Cividis", "Earth", "Electric", "Greens", "Greys", "Hot", "Jet", "Picnic", "Portland", "Rainbow", "RdBu", "Reds", "Viridis" (default), "YlGnBu", and "YlOrRd". |
.coloring_ |
String specifying where the colour-scale set by the .scale_ parameter is applied on the "plotly" contour. The options are "fill", "heatmap", "none", and "lines". The "fill" option (default) paints the colour scales over the layers of the contour; the "heatmap" option employs a heatmap gradient colouring between each contour level; the "none" option paints no colours on the contour layers and uses a single colour with the contour lines; and the "lines" option applies the colour-scale on the contour lines. |
.legend_ |
Logical for whether to show the "plotly" contour colour-bar legend. |
.zoom_ |
Logical (default TRUE) for whether to zoom in to the identified sets (best fitting sets, extrema, and posterior distributions centres). |
.x_axis_lb_ |
Numeric (double) value specifying the lower bound of x-axis. |
.x_axis_ub_ |
Numeric (double) value specifying the upper bound of x-axis. |
.y_axis_lb_ |
Numeric (double) value specifying the lower bound of y-axis. |
.y_axis_ub_ |
Numeric (double) value specifying the upper bound of y-axis. |
## Not run:
fitness_function_plots <- plot_fitness_function(
.l_params_ = CR_CRS_2P2T$calibration_parameters,
.l_gof_values_ = CR_CRS_2P2T$GOF_measure_plot,
.l_calibration_results_ = CR_CRS_2P2T$calibration_results,
.l_PSA_samples_ = CR_CRS_2P2T$PSA_samples,
.t_prior_samples_ = CR_CRS_2P2T$prior_samples$LHS,
.true_points_ = TRUE,
.greys_ = FALSE,
.scale_ = NULL,
.coloring_ = "none",
.blank_ = FALSE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.