calibrateModel_beyesian2 | R Documentation |
Calibrate models using Bayesian methods - employing IMIS::IMIS()
calibrateModel_beyesian2(
.b_method = "SIR",
.func,
.args,
.l_targets,
.l_params,
.samples,
.n_resample = 1000,
.IMIS_sample = 1000,
.IMIS_iterations = 30,
.transform = FALSE
)
.b_method |
Character defining the Bayesian method to use in the
calibration process. Currently supported methods are |
.func |
A function defining the decision analytic model to be calibrated. |
.args |
A list of arguments passed to the model function. |
.l_targets |
A list containing a vector of targets' names, a vector of targets' weights, a vector of targets' distributions, and a table for each target that contains the values (column name 'value') and standard errors (column name 'sd') of the corresponding target. |
.l_params |
A list that contains a vector of parameter names, distributions and distributions' arguments. |
.samples |
A table or vector of sampled parameter values |
.n_resample |
the desired number of draws from the posterior |
.IMIS_sample |
the incremental sample size at each IMIS iteration |
.IMIS_iterations |
the maximum number of iterations in IMIS |
.transform |
Logical for whether to back-transform parameters to their original scale. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.