View source: R/plot_priors_posterior_helpers.R
plot_pri_post_distributions | R Documentation |
Plot prior-posterior distributions
plot_pri_post_distributions(
.engine_ = "ggplot2",
.l_PSA_samples_ = self$PSA_samples,
.l_params_ = self$calibration_parameters,
.l_calibration_results_ = self$calibration_results,
.t_prior_samples_ = self$prior_samples[["LHS"]],
.transform_ = self$transform_parameters,
.bins_ = 100,
.legend_pos_ = "none",
.log_scaled_ = FALSE
)
.engine_ |
String specifying the plotting engine. Currently supports "ggplot2". Also, some of the code is written for the "triliscope" engine. |
.l_PSA_samples_ |
List containing PSA samples - from which the function uses Bayesian calibration results. |
.l_params_ |
List containing information about calibration parameters, including parameters' names, distributions, and boundaries. |
.l_calibration_results_ |
List containing the results from the calibration methods. |
.t_prior_samples_ |
Dataset or tibble containing prior samples. |
.transform_ |
Logical for whether the model is set to handle parameters on a transformed scale. |
.bins_ |
Numeric specifying the number of bins in the histograms. |
.legend_pos_ |
String defining the location of the legend position default (bottom). |
.log_scaled_ |
Logical for whether to present the x-axis using the log scale. |
## Not run:
pri_post_plots <- plot_pri_post_distributions(
.engine_ = "ggplot2",
.l_PSA_samples_ = CR_CRS_2P2T$PSA_samples,
.l_params_ = CR_CRS_2P2T$calibration_parameters,
.l_calibration_results_ = CR_CRS_2P2T$calibration_results,
.t_prior_samples_ = CR_CRS_2P2T$prior_samples[["LHS"]],
.transform_ = CR_CRS_2P2T$transform_parameters,
.bins_ = 20,
.legend_pos_ = "none",
.log_scaled_ = FALSE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.