summ_optim: Summarise and/or create uncertainty estimates from the...

View source: R/optim_helpers.R

summ_optimR Documentation

Summarise and/or create uncertainty estimates from the hessian matrix

Description

Summarise and/or create uncertainty estimates from the hessian matrix

Usage

summ_optim(
  .params_name = v_params_names,
  .params_vals,
  .gof = NULL,
  .gof_name,
  .gof_value,
  .s_method,
  .par,
  .func = NULL,
  .args = NULL,
  .hessian = NULL,
  .maximiser = TRUE,
  .convergence,
  .trace = NULL,
  ...
)

Arguments

.params_name

Character vector containing the names of the parameters that were passed to the goodness-of-fit algorithm or will be passed to .func.

.params_vals

Guess or initial values used to start the algorithm.

.gof

goodness-of-fit function used or to be used in the optimisation.

.gof_name

Character naming goodness-of-fit method that produced samples

.gof_value

Numeric goodness-of-fit value for the corresponding parameters.

.s_method

Character naming search algorithm that produced .GoF_value.

.par

Parameter values to be used to generate 95 interval and/or passed to .func to generate the .hessian matrix.

.func

A function passed to and to be optimised by .gof.

.args

A list of arguments passed to .func.

.hessian

The hessian matrix.

.maximiser

Logical for whether algorithm that created (or .func which will create) the hessian matrix maximised the goodness-of-fit function. Default is TRUE.

.convergence

Convergence label; 0 successful convergence

.trace

Optimisation function trace

...

Extra arguments to be passed to .gof.

Value

A tibble with the best identified parameters, their 95% confidence intervals and corresponding goodness-of-fit values.


W-Mohammed/calibrater documentation built on Oct. 14, 2023, 1:57 a.m.