Description Usage Arguments Value See Also Examples
As the fourth step of RegEnrich analysis, regulator ranking is followed by differential expression analysis (regenrich_diffExpr), regulator-target network inference (regenrich_network), and enrichment analysis (regenrich_enrich).
1 2 3 4 | regenrich_rankScore(object)
## S4 method for signature 'RegenrichSet'
regenrich_rankScore(object)
|
object |
a 'RegenrichSet' object, to which
|
This function returns a 'RegenrichSet' object with an updated 'resScore' slots, which is a 'regEnrichScore' (also 'data.frame') object, and an updated 'paramsIn' slot. In the 'regEnrichScore' object there are five columns, which are 'reg' (regulator), 'negLogPDEA' (-log10(p values of differential expression analysis)), 'negLogPEnrich' (-log10(p values of enrichment analysis), 'logFC' (log2 fold changes), and 'score' (RegEnrich ranking score).
Previous step regenrich_enrich
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | # library(RegEnrich)
data("Lyme_GSE63085")
data("TFs")
data = log2(Lyme_GSE63085$FPKM + 1)
colData = Lyme_GSE63085$sampleInfo
# Take first 2000 rows for example
data1 = data[seq(2000), ]
design = model.matrix(~0 + patientID + week, data = colData)
# Initializing a 'RegenrichSet' object
object = RegenrichSet(expr = data1,
colData = colData,
method = 'limma', minMeanExpr = 0,
design = design,
contrast = c(rep(0, ncol(design) - 1), 1),
networkConstruction = 'COEN',
enrichTest = 'FET')
# Differential expression analysis
object = regenrich_diffExpr(object)
# Network inference using 'COEN' method
object = regenrich_network(object)
# Enrichment analysis by Fisher's exact test (FET)
object = regenrich_enrich(object)
# Regulators ranking
(object = regenrich_rankScore(object))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.