#' Install SignatureEstimation package from URL source.
#'
#' @keywords internal
InstallSignatureEstimation <- function(){
message("Installing SignatureEstimation from URL source...\n")
remotes::install_url("https://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/software/signatureestimation/SignatureEstimation.tar.gz")
}
#' Run SignatureEstimation Quadratic Programming (QP) attribution
#' on a spectra catalog file and known signatures.
#'
#' @param input.catalog File containing input spectra catalog.
#' Columns are samples (tumors), rows are mutation types.
#'
#' @param gt.sigs.file File containing input mutational signatures.
#' Columns are signatures, rows are mutation types.
#'
#' @param out.dir Directory that will be created for the output;
#' abort if it already exits. Log files will be in
#' \code{paste0(out.dir, "/tmp")}.
#'
#' @param seedNumber Specify the pseudo-random seed number
#' used to run SignatureEstimation. Setting seed can make the
#' attribution of SignatureEstimation repeatable.
#' Default: 1.
#'
#' @param test.only If TRUE, only analyze the first 10 columns
#' read in from \code{input.catalog}.
#' Default: FALSE
#'
#' @param overwrite If TRUE, overwrite existing output.
#' Default: FALSE
#'
#' @return Invisibly returns a list which contains: \itemize{
#' \item $exposuresCounts: the exposure counts inferred in ICAMSxtra format,
#' \item $exposureErrors: the MSE in ICAMSxtra format,
#' \item $SEoutput: A list which contains: \itemize{
#' \item $exposures: exposure proportion in SignatureEstimation format,
#' and errors invisibly.
#' \item $errors: mean squared error (MSE) between normalized reconstructed
#' spectra and normalized ground-truth mutational spectra.}
#' }
#'
#' @importFrom utils capture.output
#'
#' @export
RunSignatureEstimationQPAttributeOnly <-
function(input.catalog,
gt.sigs.file,
out.dir,
seedNumber = 1,
test.only = FALSE,
overwrite = FALSE) {
# Install SignatureEstimation from Bioconductor, if failed to be loaded
if (!requireNamespace("SignatureEstimation", quietly = TRUE))
InstallSignatureEstimation()
# Set seed
set.seed(seedNumber)
seedInUse <- .Random.seed # Save the seed used so that we can restore the pseudorandom series
RNGInUse <- RNGkind() # Save the random number generator (RNG) used
# Read in spectra data from input.catalog file
# spectra: spectra data.frame in ICAMS format
spectra <- ICAMS::ReadCatalog(input.catalog,
strict = FALSE)
if (test.only) spectra <- spectra[ , 1:10]
# Read in ground-truth signatures
# gtSignatures: signature data.frame in ICAMS format
gtSignatures <- ICAMS::ReadCatalog(gt.sigs.file)
# Create output directory
if (dir.exists(out.dir)) {
if (!overwrite) stop(out.dir, " already exits")
} else {
dir.create(out.dir, recursive = T)
}
# Convert ICAMS-formatted spectra and signatures
# into SignatureEstimation format
# Requires removal of redundant attributes.
convSpectra <- spectra
attr(convSpectra,"catalog.type") <- NULL
attr(convSpectra,"region") <- NULL
class(convSpectra) <- "matrix"
gtSignaturesSE <- gtSignatures
attr(gtSignaturesSE,"catalog.type") <- NULL
attr(gtSignaturesSE,"region") <- NULL
class(gtSignaturesSE) <- "matrix"
# Obtain inferred exposures using decomposeQP/decomposeSA function
SEoutput <- SignatureEstimation::findSigExposures(
M = convSpectra,
P = gtSignaturesSE,
decomposition.method = SignatureEstimation::decomposeQP)
# Obtain absolute exposure counts for tumos
# from SEoutput$exposures which refers to relative exposures (exposure proportions)
exposureCounts <- t(SEoutput$exposures)
exposureCounts <- exposureCounts * colSums(convSpectra)
exposureCounts <- t(exposureCounts)
# Obtain absolute mean squared error (MSE) for tumors
# from SEoutput$errors which refers to relative MSE
exposureErrors <- t(SEoutput$errors)
exposureErrors <- exposureErrors * colSums(convSpectra)
exposureErrors <- t(exposureErrors)
# Copy ground.truth.sigs to out.dir
file.copy(from = gt.sigs.file,
to = paste0(out.dir,"/ground.truth.signatures.csv"),
overwrite = overwrite)
# Write inferred exposures into a SynSig formatted exposure file.
SynSigGen::WriteExposure(exposureCounts,
paste0(out.dir,"/inferred.exposures.csv"))
# Write inferred exposures into a SynSig formatted exposure file.
SynSigGen::WriteExposure(exposureErrors,
paste0(out.dir,"/exposure.MSE.errors.csv"))
# Save seeds and session information
# for better reproducibility
capture.output(sessionInfo(), file = paste0(out.dir,"/sessionInfo.txt")) # Save session info
write(x = seedInUse, file = paste0(out.dir,"/seedInUse.txt")) # Save seed in use to a text file
write(x = RNGInUse, file = paste0(out.dir,"/RNGInUse.txt")) # Save seed in use to a text file
# exposuresCounts: the exposure counts inferred in ICAMSxtra format,
# exposureErrors: the MSE in ICAMSxtra format.
# SEoutput:
# $exposures: exposure proportion in SignatureEstimation format,
# and errors invisibly.
# $errors: mean squared error (MSE) between normalized reconstructed
# spectra and normalized ground-truth mutational spectra.
retval <- list(
exposureCounts = exposureCounts,
exposureErrors = exposureErrors,
SEoutput = SEoutput
)
invisible(retval)
}
#' Run SignatureEstimation Simulated Annealing (SA) attribution
#' on a spectra catalog file and known signatures.
#'
#' @param input.catalog File containing input spectra catalog.
#' Columns are samples (tumors), rows are mutation types.
#'
#' @param gt.sigs.file File containing input mutational signatures.
#' Columns are signatures, rows are mutation types.
#'
#' @param out.dir Directory that will be created for the output;
#' abort if it already exits. Log files will be in
#' \code{paste0(out.dir, "/tmp")}.
#'
#' @param seedNumber Specify the pseudo-random seed number
#' used to run SignatureEstimation. Setting seed can make the
#' attribution of SignatureEstimation repeatable.
#' Default: 1.
#'
#' @param test.only If TRUE, only analyze the first 10 columns
#' read in from \code{input.catalog}.
#' Default: FALSE
#'
#' @param overwrite If TRUE, overwrite existing output.
#' Default: FALSE
#'
#' @return Invisibly returns a list which contains: \itemize{
#' \item $exposuresCounts: the exposure counts inferred in ICAMSxtra format,
#' \item $exposureErrors: the MSE in ICAMSxtra format,
#' \item $SEoutput: A list which contains: \itemize{
#' \item $exposures: exposure proportion in SignatureEstimation format,
#' and errors invisibly.
#' \item $errors: mean squared error (MSE) between normalized reconstructed
#' spectra and normalized ground-truth mutational spectra.}
#' }
#'
#' @importFrom utils capture.output
#'
#' @export
RunSignatureEstimationSAAttributeOnly <-
function(input.catalog,
gt.sigs.file,
out.dir,
seedNumber = 1,
test.only = FALSE,
overwrite = FALSE) {
# Install SignatureEstimation from Bioconductor, if failed to be loaded
if (!requireNamespace("SignatureEstimation", quietly = TRUE))
InstallSignatureEstimation()
# Set seed
set.seed(seedNumber)
seedInUse <- .Random.seed # Save the seed used so that we can restore the pseudorandom series
RNGInUse <- RNGkind() # Save the random number generator (RNG) used
# Read in spectra data from input.catalog file
# spectra: spectra data.frame in ICAMS format
spectra <- ICAMS::ReadCatalog(input.catalog,
strict = FALSE)
if (test.only) spectra <- spectra[ , 1:10]
# Read in ground-truth signatures
# gtSignatures: signature data.frame in ICAMS format
gtSignatures <- ICAMS::ReadCatalog(gt.sigs.file)
# Create output directory
if (dir.exists(out.dir)) {
if (!overwrite) stop(out.dir, " already exits")
} else {
dir.create(out.dir, recursive = T)
}
# Convert ICAMS-formatted spectra and signatures
# into SignatureEstimation format
# Requires removal of redundant attributes.
convSpectra <- spectra
attr(convSpectra,"catalog.type") <- NULL
attr(convSpectra,"region") <- NULL
class(convSpectra) <- "matrix"
gtSignaturesSE <- gtSignatures
attr(gtSignaturesSE,"catalog.type") <- NULL
attr(gtSignaturesSE,"region") <- NULL
class(gtSignaturesSE) <- "matrix"
# Obtain inferred exposures using decomposeQP/decomposeSA function
SEoutput <- SignatureEstimation::findSigExposures(
M = convSpectra,
P = gtSignaturesSE,
decomposition.method = SignatureEstimation::decomposeSA)
# Obtain absolute exposure counts for tumos
# from SEoutput$exposures which refers to relative exposures (exposure proportions)
exposureCounts <- t(SEoutput$exposures)
exposureCounts <- exposureCounts * colSums(convSpectra)
exposureCounts <- t(exposureCounts)
# Obtain absolute mean squared error (MSE) for tumors
# from SEoutput$errors which refers to relative MSE
exposureErrors <- t(SEoutput$errors)
exposureErrors <- exposureErrors * colSums(convSpectra)
exposureErrors <- t(exposureErrors)
# Copy ground.truth.sigs to out.dir
file.copy(from = gt.sigs.file,
to = paste0(out.dir,"/ground.truth.signatures.csv"),
overwrite = overwrite)
# Write inferred exposures into a SynSig formatted exposure file.
SynSigGen::WriteExposure(exposureCounts,
paste0(out.dir,"/inferred.exposures.csv"))
# Write inferred exposures into a SynSig formatted exposure file.
SynSigGen::WriteExposure(exposureErrors,
paste0(out.dir,"/exposure.MSE.errors.csv"))
# Save seeds and session information
# for better reproducibility
capture.output(sessionInfo(), file = paste0(out.dir,"/sessionInfo.txt")) # Save session info
write(x = seedInUse, file = paste0(out.dir,"/seedInUse.txt")) # Save seed in use to a text file
write(x = RNGInUse, file = paste0(out.dir,"/RNGInUse.txt")) # Save seed in use to a text file
# exposuresCounts: the exposure counts inferred in ICAMSxtra format,
# exposureErrors: the MSE in ICAMSxtra format.
# SEoutput:
# $exposures: exposure proportion in SignatureEstimation format,
# and errors invisibly.
# $errors: mean squared error (MSE) between normalized reconstructed
# spectra and normalized ground-truth mutational spectra.
retval <- list(
exposureCounts = exposureCounts,
exposureErrors = exposureErrors,
SEoutput = SEoutput
)
invisible(retval)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.