library(spatstat)
library(glmnet)
library(Matrix)
source("./R/glmnet_logiengine.R")
set.seed(42)
n_spp <- 5
spp_names <- paste0("spp_",1:n_spp)
radii <- matrix(5e-3,n_spp,n_spp)
log_gammas <- rsparsematrix(n_spp,n_spp,
density = 0.2,
rand.x = function(n){runif(n,-3,-1)})
log_gammas <- (log_gammas + t(log_gammas))/2
rownames(log_gammas) <- colnames(log_gammas) <- spp_names
beta <- exp(rnorm(n_spp, 6,0.5))
pp <- rmh(model = rmhmodel(cif = "straussm",
par = list(beta = beta,
gamma = exp(as.matrix(log_gammas)),
radii = radii),
trend = NULL,
w = owin(xrange = c(0,1),
yrange = c(0,1)),
types = spp_names))
pp
n_d <- 2000
dummy <- data.frame(x = runif(n_d, 0,1),
y = runif(n_d, 0,1),
mark = factor( sample(spp_names, n_d, T),
levels = spp_names))
dummy_pp <- ppp(x = dummy[,1],y = dummy[,2], marks = dummy[,3] ,
window = owin(xrange = c(0,1),
yrange = c(0,1)))
Q <- quadscheme.logi(pp, dummy_pp)
trend <- ~marks -1
interaction <- MultiStrauss(1*radii)
penalty.factor <- c(rep(0,n_spp))
lambda <- NULL
res_obj <- glmnet.logi.engine(Q, trend, interaction = interaction,
penalty.factor = penalty.factor, lambda = lambda,
covariates = NULL, cv = T)
res_obj_logi <- ppm(Q, trend = trend,
interaction = interaction,
covariates = NULL)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.