# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
negll_cone_pars <- function(par, cone_heights, cone_slope, cone_coords, ag_coords, max_titers, min_titers, error_sd, optimise_cone_slope, optimise_cone_coords) {
.Call('_ablandscapes_negll_cone_pars', PACKAGE = 'ablandscapes', par, cone_heights, cone_slope, cone_coords, ag_coords, max_titers, min_titers, error_sd, optimise_cone_slope, optimise_cone_coords)
}
#' Calculate log likelihood of single fitted HI titer
#'
#' This is the base function for performing a maximum likelihood calculation for a
#' single fitted HI titer given upper and lower limits of the measured value.
#'
#' @param max_titer The upper bound of the measured titer.
#' @param min_titer The lower bound of the measured titer.
#' @param pred_titer The predicted titer.
#' @param error_sd The standard deviation of the error.
#'
#' @details This function simply calculates to log likelihood of a predicted measurement
#' given the upper and lower bounds of the measurement, the main assumption being that the
#' associated error is normally distributed.
#'
#' @return Returns the log-likelihood of the measured titer given the measured titer
#' bounds and error standard deviation supplied.
NULL
#' Calculate the total negative log-likelihood of a mean titer
#'
#' This is a base function to sum the total _negative_ log likelihood of a mean titer.
#'
#' @param max_titers Numeric vector of the upper bounds of the measured titers.
#' @param min_titers Numeric vector of the lower bounds of the measured titers.
#' @param predicted_mean The predicted mean titer.
#' @param titer_sd The expected standard deviation of titers.
#'
#' @details This function calculates the total negative log-likelihood of a predicted mean
#' titer given a set of titers. The main assumption is that both measurement error and
#' titer variation are normally distributed. Note that the argument \code{titer_sd} is the
#' total expected standard deviation of the titer set, i.e. measurement error plus titer
#' variation.
#'
calc_mean_titer_negll <- function(predicted_mean, max_titers, min_titers, titer_sd) {
.Call('_ablandscapes_calc_mean_titer_negll', PACKAGE = 'ablandscapes', predicted_mean, max_titers, min_titers, titer_sd)
}
calc_mean_titer_negll_without_sd <- function(pars, max_titers, min_titers) {
.Call('_ablandscapes_calc_mean_titer_negll_without_sd', PACKAGE = 'ablandscapes', pars, max_titers, min_titers)
}
#' Calculate the negative log likelihood of a linear model
#'
#' This is the base function used by the optimizer to calculate the negative
#' log likelihood of a given set of linear model parameters
#'
#' @param par A vector of parameters, intercept followed by coefficients for each
#' coordinate dimension, or in the case of getting likelihood for a given height
#' simply the coefficients for each coordinate dimension
#' @param max_titers Numeric vector of the upper bounds of the measured titers
#' @param min_titers Numeric vector of the lower bounds of the measured titers
#' @param ag_coords Matrix of antigenic coordinates relative to the landscape
#' coordinates being modelled
#' @param ag_weights A vector of weights to apply to each antigen, according to
#' their distance from the point being modelled
#' @param error_sd The expected standard deviation of titer error
#'
#' @name negll_titer_lm
#'
NULL
#' @rdname negll_titer_lm
negll_titer_lm <- function(par, max_titers, min_titers, ag_coords, ag_weights, error_sd) {
.Call('_ablandscapes_negll_titer_lm', PACKAGE = 'ablandscapes', par, max_titers, min_titers, ag_coords, ag_weights, error_sd)
}
#' @rdname negll_titer_lm
negll_lndscp_height <- function(par, lndscp_height, max_titers, min_titers, ag_coords, ag_weights, error_sd) {
.Call('_ablandscapes_negll_lndscp_height', PACKAGE = 'ablandscapes', par, lndscp_height, max_titers, min_titers, ag_coords, ag_weights, error_sd)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.