aucScores-class | R Documentation |
Contains the AUC scores for each gene- or region-set.
They can be accessed through getAUC()
and the regular methods
(i.e. nrow, rownames... ) available for SummarizedExperiment objects.
## S4 method for signature 'aucScores'
show(object)
## S4 method for signature 'aucScores'
getAUC(object)
object |
Results from |
show: Prints a summary of the object
getAUC: Returns the matrix containing the AUC scores
##################################################
# Setup & previous steps in the workflow:
#### Gene sets
# As example, the package includes an Hypoxia gene set:
txtFile <- paste(file.path(system.file('examples', package='RcisTarget')),
"hypoxiaGeneSet.txt", sep="/")
geneLists <- list(hypoxia=read.table(txtFile, stringsAsFactors=FALSE)[,1])
#### Databases
## Motif rankings: Select according to organism and distance around TSS
## (See the vignette for URLs to download)
# motifRankings <- importRankings("hg19-500bp-upstream-7species.mc9nr.feather")
## For this example we will use a SUBSET of the ranking/motif databases:
library(RcisTarget.hg19.motifDBs.cisbpOnly.500bp)
data(hg19_500bpUpstream_motifRanking_cispbOnly)
motifRankings <- hg19_500bpUpstream_motifRanking_cispbOnly
## Motif - TF annotation:
data(motifAnnotations_hgnc_v9) # human TFs (for motif collection 9)
motifAnnotation <- motifAnnotations_hgnc_v9
### Run RcisTarget
# Step 1. Calculate AUC
motifs_AUC <- calcAUC(geneLists, motifRankings)
##################################################
#Exploring the output:
motifs_AUC
class(motifs_AUC)
# Extracting the AUC matrix:
getAUC(motifs_AUC)[,1:5]
# Subsetting and regular manipulation methods are also available:
motifs_AUC[1,]
motifs_AUC[,3:4]
dim(motifs_AUC)
nrow(motifs_AUC)
ncol(motifs_AUC)
colnames(motifs_AUC)
rownames(motifs_AUC)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.