data-raw/process_spot_measurements.R

##### Spring 2015 soil moisture
#####

rm(list = ls())
library(tidyverse)

# input ---------------------------------------------------- #

q_info <-read.csv('data-raw/quad_info.csv')

p1 <- read.csv('data-raw/spot_measures/2012-06-06_spot_measurements.csv', skip = 3)
p2 <- read.csv('data-raw/spot_measures/2015-04-29_spot_measurements.csv', skip = 2)
p3 <- read.csv('data-raw/spot_measures/2015-05-07_spot_measurements.csv')
p4 <- read.csv('data-raw/spot_measures/2016-05-10_spot_measurements.csv')
p5 <- read.csv('data-raw/spot_measures/2015-06-09_spot_measurements.csv')

# output ---------------------------------------------------- #

outfile <- 'temp_data/spring_spot_measurements.RDS'

# ---------------------------------------------------- #


p1$date <- '2012-06-06'
p1$Plot <- gsub( p1$Plot, pattern = '-', replacement = '_')
p1$rep <- c(1:2)
p1 <- p1 %>%
  rename( plot = Plot )
p2$date <- '2015-04-29'

df <- rbind( p2, p3, p4, p5)

df <- df %>%
  gather( key = rep, PCT, E1:W3 )

df <- rbind( p1, df )

df$plot <- paste0('X', df$plot)

df <-
  df %>%
  left_join(q_info, by = c('plot' = 'QuadName'))

df$date <- ymd(df$date)

df <-
  df %>%
  rename(VWC = PCT)

df <-
  df %>%
  arrange( plot, date , rep, quad, Grazing, paddock, Group, Treatment, PrecipGroup)

# ------------------------------------------------------------ #

saveRDS(df, outfile )
akleinhesselink/sheepweather documentation built on May 28, 2019, 1:17 p.m.