#' util_fbs_parent_v5dat: Process raw Qualtrics visit 5 data for the parent
#'
#' This function loads the .sav raw data file for the parent visit 5 data that was
#' collected via Qualtrics and cleans the data. Cleaning the data involves:
#' 1) extracting all variable descriptions,
#' 2) selecting relevant data columns,
#' 3) removing all practice events (e.g., 999)
#' 4) re-ordering and re-name data columns
#' 5) general fixes to variable labels (remove ' - 1')
#' 6) fix variables with 99 issue for 'prefer not to answer'
#' 8) fix factor levels to match questionnaire scoring
#'
#' The databases MUST follow the naming convention: Parent_V5_YYYY-MM-DD.sav
#'
#' @inheritParams util_fbs_parent_v1dat
#' @inheritParams util_fbs_parent_v1dat
#'
#'
#' @return A list containing: 1) data: data.frame with raw, cleaned data from parent visit 5 Qualtrics;
#' 2) dict: all variable descriptions; 3) pna_data: data.frame marking participants who 'prefered not to answer' (pna) specific questions; and 4) pna_dict: all variable descriptions for pna_data
#'
#' @examples
#' #if in same working directory as data:
#' p_v5_dat <- util_fbs_parent_v5dat('Parent_V5')
#'
#' \dontrun{
#' #file_pattern must be a string. The following will not run:
#' p_v5_dat <- util_fbs_parent_v5dat(Parent_V5)
#'
#' #file_pattern must have the respondent ('Parent') and visit number ('V1'). If just enter 'Parent', the script will not run because it will return multiple files for different parent visits. The following will not run:
#' p_v5_dat <- util_fbs_parent_v5dat('Parent')
#' }
#'
#'
#' @export
#'
util_fbs_parent_v5dat <- function(file_pattern, data_path) {
#### 1. Set up/initial checks #####
# check that file_pattern exist and is a string
filepat_arg <- methods::hasArg(file_pattern)
if (isTRUE(filepat_arg) & !is.character(file_pattern)) {
stop("file_pattern must be entered as a string: e.g., 'Parent_V5'")
} else if (isFALSE(filepat_arg)) {
stop("file_pattern must set to the a string matching the name of the raw data file for parent visit: e.g., 'Parent_V5'")
}
# check datapath
datapath_arg <- methods::hasArg(data_path)
if (isTRUE(datapath_arg)) {
if (!is.character(data_path)) {
stop("data_path must be entered as a string: e.g., '.../Participant_Data/untouchedRaw/'")
}
}
#### 2. Load Data #####
# Verified visit dates
if (isTRUE(datapath_arg)) {
#check pattern of directories specified in Data manual
visit_dates_path <- list.files(path = data_path, pattern = 'verified_visit_dates', full.names = TRUE)
} else {
visit_dates_path <- list.files(pattern = 'verified_visit_dates', full.names = TRUE)
}
# check number of files found
if (length(visit_dates_path) > 1) {
stop("More than one file matched 'verified_visit_dates'. If have more than 1 file matching the pattern in the directory, may need to move one.")
} else if (length(visit_dates_path) == 0) {
stop("No files found for file_pattern 'verified_visit_dates'. Be sure the data_path is correct and that the file exists.")
}
# check if file exists
visit_dates_exists <- file.exists(visit_dates_path)
# load data if it exists
if (isTRUE(visit_dates_exists)) {
visit_dates <- read.csv(visit_dates_path, header = TRUE)
} else {
if (isTRUE(datapath_arg)) {
stop("File does not exist. Check data_path entered")
} else {
stop("File does not exist. Check that the data exists in current working directory")
}
}
# Qualtrics data
if (isTRUE(datapath_arg)) {
qv5_parent_pathlist <- list.files(path = data_path, pattern = file_pattern, full.names = TRUE)
} else {
qv5_parent_pathlist <- paste0(pattern = file_pattern, full.names = TRUE)
}
# check number of files found
if (length(qv5_parent_pathlist) > 1) {
stop("More than one file matched the file_pattern. Be sure thefile_pattern specifies both the respondent (Parent/Child) and visit number (V#). If have more than 1 file matching the pattern in the directory, may need to move to enter a more specific file_pattern than is standard.")
} else if (length(qv5_parent_pathlist) == 0) {
stop('No files found. Be sure the data_path and file_pattern are correct and that the file exists')
} else {
qv5_parent_path <- qv5_parent_pathlist
}
# check that file is of type '.sav'
if (!grepl('.sav', qv5_parent_path, fixed = TRUE)){
stop("The file found is not an SPSS database (.sav)")
}
# check if file exists
qv5_parent_exists <- file.exists(qv5_parent_path)
# load data if it exists
if (isTRUE(qv5_parent_exists)) {
qv5_parent_dat <- as.data.frame(haven::read_spss(qv5_parent_path))
} else {
if (isTRUE(datapath_arg)) {
stop("File does not exist. Check date_str and data_path entered")
} else {
stop("File does not exist. Check date_str and that the data exists in current working directory")
}
}
#### 3. Clean Data #####
# 3a) extract variable labels/descriptions
qv5_parent_labels <- lapply(qv5_parent_dat, function(x) attributes(x)$label)
# 3b) selecting relevant data columns
qv5_parent_clean <- qv5_parent_dat[c(1, 11:35)]
## update labels
qv5_parent_clean_labels <- qv5_parent_labels[c(1, 11:35)]
# 3c) removing all practice events (e.g., 999)
qv5_parent_clean <- qv5_parent_clean[!is.na(qv5_parent_clean[["ID"]]) & qv5_parent_clean[["ID"]] < 999, ]
# 4) re-ordering and re-name data columns general order #### 1) demographics - AUDIT, 2) fasting, 3) updates
qv5_parent_clean <- qv5_parent_clean[c(2, 1, 17:26, 3:16)]
qv5_parent_clean_labels <- qv5_parent_clean_labels[c(2, 1, 17:26, 3:16)]
## re-name variables
# make lower case
names(qv5_parent_clean) <- tolower(names(qv5_parent_clean))
# start date rename
names(qv5_parent_clean)[2] <- "start_date"
# remove 'v5'
for (var in 1:length(names(qv5_parent_clean))) {
var_name <- as.character(names(qv5_parent_clean)[var])
# remove trailing 'v5' from names
if (grepl("v5", var_name, fixed = TRUE)) {
names(qv5_parent_clean)[var] <- gsub("v5", "", var_name)
}
}
## update data labels
names(qv5_parent_clean_labels) <- names(qv5_parent_clean)
## 5) general fixes to labels (add visit, remove '- 1') ####
## remove formatting errors
for (var in 1:length(names(qv5_parent_clean))) {
var_name <- as.character(names(qv5_parent_clean)[var])
# remove ' \' ' from apostrophes (e.g., child\'s)
if (grepl("'s", qv5_parent_clean_labels[[var_name]], fixed = TRUE)) {
qv5_parent_clean_labels[[var_name]] <- gsub("\\'s", "", qv5_parent_clean_labels[[var_name]])
}
# remove trailing 'v5 ' from labels
if (grepl("V5", qv5_parent_clean_labels[[var_name]], fixed = TRUE)) {
qv5_parent_clean_labels[[var_name]] <- gsub("\\V5 - ", "", qv5_parent_clean_labels[[var_name]])
qv5_parent_clean_labels[[var_name]] <- gsub("\\V5 ", "", qv5_parent_clean_labels[[var_name]])
}
}
#### 6) fix 99's and other poor categories ####
## check for labels/99 option: 1) if 99's exist, make a 'prefere not to answer' (pna) variable to go in pna database, 2) replace 99's with NA and make variable numeric
## make pna database
qv5_parent_pna <- data.frame(id = qv5_parent_clean[["id"]])
qv5_parent_pna_labels <- lapply(qv5_parent_pna, function(x) attributes(x)$label)
qv5_parent_pna_labels[["id"]] <- qv5_parent_clean_labels[["id"]]
pna_label <- "Note: prefer not to answer (pna) marked NA - see pna database for which were pna rather than missing NA"
## 6a) categorical variables with 99's data ####
level99_issue_catvars <- names(qv5_parent_clean)[c(3:20)]
for (v in 1:length(level99_issue_catvars)) {
# get variable name
pvar <- level99_issue_catvars[v]
# if has '99' value, create new pna variable marking pna == 1
if (is.element(99, qv5_parent_clean[[pvar]])) {
pna_dat <- ifelse(is.na(qv5_parent_clean[[pvar]]), 0, ifelse(qv5_parent_clean[[pvar]] == 99, 1, 0))
new_pna <- length(names(qv5_parent_pna)) + 1
qv5_parent_pna[[new_pna]] <- pna_dat
names(qv5_parent_pna)[new_pna] <- paste0(pvar, "_pna")
# add label to pna database
qv5_parent_pna_labels[[paste0(pvar, "_pna")]] <- paste0("prefer not to answer marked for variable ", pvar, ": ", qv5_parent_clean_labels[[pvar]])
# update true data label (only want to pna label if needed)
qv5_parent_clean_labels[[pvar]] <- paste0(qv5_parent_clean_labels[[pvar]], " -- ", pna_label)
}
# drop 99 level label labels only update if had 99 - done in if statement above
qv5_parent_clean[[pvar]] <- sjlabelled::remove_labels(qv5_parent_clean[[pvar]], labels = "Don't want to answer")
# extract variable attributes
pvar_attr <- attributes(qv5_parent_clean[[pvar]])
# replace 99 values
qv5_parent_clean[[pvar]] <- ifelse(is.na(qv5_parent_clean[[pvar]]) | qv5_parent_clean[[pvar]] == 99, NA, qv5_parent_clean[[pvar]])
# replace attributes
attributes(qv5_parent_clean[[pvar]]) <- pvar_attr
}
#### 7) reformatting dates/times ####
##7a) dates (start, dobs)
#format start date
qv5_parent_clean[["start_date"]] <- lubridate::ymd(as.Date(qv5_parent_clean[["start_date"]]))
# dates are fomrated as dd-mstr-yy
visit_dates[['RO1_V5_Date']] <- lubridate::ymd(as.Date(visit_dates[['RO1_V5_Date']], format = "%d-%b-%y"))
# add validated dates
names(visit_dates)[1] <- 'id'
qv5_parent_clean <- merge(qv5_parent_clean, visit_dates[c('id', 'RO1_V5_Date')], by = 'id', all.x = TRUE, all.y = FALSE)
#update start_date
qv5_parent_clean[["start_date"]] <- ifelse(!is.na(qv5_parent_clean[['RO1_V5_Date']]), as.character(qv5_parent_clean[['RO1_V5_Date']]), as.character(qv5_parent_clean[["start_date"]]))
#remove RO1_V date column
qv5_parent_clean <- qv5_parent_clean[, names(qv5_parent_clean) != "RO1_V5_Date"]
# add label
qv5_parent_clean_labels[["start_date"]] <- "date from participant contacts databases ('verified_visit_dates*.csv) converted to format yyyy-mm-dd in R. If no date in database, uses start_date metadata from qualtrics"
#### 8) Format for export ####
## 8a) add attributes to pna data
qv5_parent_pna[2:ncol(qv5_parent_pna)] <- as.data.frame(lapply(qv5_parent_pna[2:ncol(qv5_parent_pna)], function(x) sjlabelled::add_labels(x, labels = c(`Did not skip due to prefer not to answer` = 0, `Prefer not to answer` = 1))))
for (v in 2:ncol(qv5_parent_pna)){
class(qv5_parent_pna[[v]]) <- c("haven_labelled", "vctrs_vctr", "double")
}
## 8b) put data in order of participant ID for ease
qv5_parent_clean <- qv5_parent_clean[order(qv5_parent_clean[["id"]]), ]
qv5_parent_pna <- qv5_parent_pna[order(qv5_parent_pna[["id"]]), ]
## 8c) make sure the variable labels match in the dataset
qv5_parent_clean = sjlabelled::set_label(qv5_parent_clean, label = matrix(unlist(qv5_parent_clean_labels, use.names = FALSE)))
qv5_parent_pna = sjlabelled::set_label(qv5_parent_pna, label = matrix(unlist(qv5_parent_pna_labels, use.names = FALSE)))
# make list of data frame and associated labels
qv5_parent <- list(data = qv5_parent_clean, dict = qv5_parent_clean_labels, pna_data = qv5_parent_pna, pna_dict = qv5_parent_pna_labels)
return(qv5_parent)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.