R/mle.pcm.group.R

Defines functions mle_pcm_CR mle_pcm_group_CR mle.pcm.group

Documented in mle.pcm.group

## File Name: mle.pcm.group.R
## File Version: 0.182


#***** MLE of person parameters for individuals and groups
mle.pcm.group <- function( dat, b, a=rep(1,ncol(dat)), group=NULL, pid=NULL,
        adj_eps=.3, conv=.0001, maxiter=30)
{
    # indicator for groupwise estimation
    est_group <- ! is.null(group)
    if ( is.null( pid )){
        pid <- 1:(nrow(dat))
    }

    #*** data preparation
    data <- dat
    dat_resp <- 1 - is.na(data)
    dat <- data
    dat[ is.na(data) ] <- 0
    dat <- as.matrix(dat)
    theta0 <- rep( 0, nrow(dat) )
    dat_resp <- as.matrix( dat_resp )

    #**** group indicators
    if (est_group){
        ind <- order(group)
        dat_resp <- dat_resp[ ind, ]
        dat <- dat[ind,]
        group <- group[ind]
        idgroup <- match( group, unique( group ))
        # group indices
        gr1 <- rowsum( 1+0*idgroup, idgroup )
        c1 <- cumsum( gr1[, 1] )
        groupM <- as.matrix( cbind( c( 1, c1[ - length(c1) ] +1 ), c1 ) )
    }

    #**** extract maximum values
    maxK <- apply( dat, 2, max )
    # compute person scores
    personScore <- rowSums( dat * dat_resp )
    # compute person maximum score
    personMax <- rowSums( matrix( maxK, nrow=nrow(dat),
                                ncol=ncol(dat), byrow=TRUE ) * dat_resp )

    #******
    # epsilon adjustment for groups
    if ( est_group){
        groupMax <- rowsum( personMax, idgroup )
        groupScore <- rowsum( personScore, idgroup )
        grstat <- data.frame( groupScore, groupMax )
        fac <- ( groupMax - 2*adj_eps ) / groupMax
        maxKM <- dat_resp*matrix( maxK, nrow(dat), ncol(dat), byrow=TRUE )
        # adjustment matrix
        adjM <- maxKM / groupMax[ idgroup ] * adj_eps * dat_resp
        dat2 <- adjM + dat_resp * ( dat * fac[ idgroup ] )
        grstat$groupScoreAdj <- rowsum( rowSums( dat2*dat_resp ), idgroup )
        theta0 <- rep( 0, nrow(groupM) )
    }
    if ( ! est_group ){ # person estimation
        fac <- ( personMax - 2*adj_eps ) / personMax
        maxKM <- dat_resp*matrix( maxK, nrow(dat), ncol(dat), byrow=TRUE )
        # adjustment matrix
        adjM <- maxKM / personMax * adj_eps * dat_resp
        dat2 <- adjM + dat_resp * ( dat * fac )
        personScoreAdj <- rowSums( dat2 * dat_resp )
        theta0 <- rep(0, nrow(dat2) )
    }
    b <- as.matrix(b)
    dat <- dat2

    if ( est_group){
        res1 <- mle_pcm_group_CR( dat, dat_resp, groupM, b, a,
                maxK+1, theta0, conv, maxiter )
        res <- data.frame( "group"=unique(group), "idgroup"=rownames(gr1),
                "N.group"=gr1[,1],
                grstat, "theta"=res1$theta, "setheta"=res1$setheta,
                "Niter"=res1$Niter )
    }
    if ( ! est_group){
        res1 <- mle_pcm_CR( dat, dat_resp, b, a,
                maxK+1, theta0, conv, maxiter )
        res <- data.frame( "pid"=pid, "personScore"=personScore,
                "personMax"=personMax, "personScoreAdj"=personScoreAdj,
                "theta"=res1$theta, "setheta"=res1$setheta,
                "Niter"=res1$Niter )
    }
    #--- output
    res <- list( "person"=res, "data_adjeps"=dat )
    return(res)
}

#----- Partial Credit Model: group-wise likelihoods
mle_pcm_group_CR <- function(dat_, dat_resp_, groupM_, b_, a_, maxK_, theta0_,
            conv_, maxiter_ )
{
    mle_pcm_group_C( dat_, dat_resp_, groupM_, b_, a_, maxK_, theta0_, conv_, maxiter_ )
}


#---- Partial Credit Model: individual likelihoods
mle_pcm_CR <- function(dat_, dat_resp_, b_, a_, maxK_, theta0_, conv_, maxiter_ ){
    mle_pcm_C( dat_, dat_resp_, b_, a_, maxK_, theta0_, conv_, maxiter_ )
}
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.