## File Name: summary.smirt.R
## File Version: 0.18
#*******************************************************
# Summary for smirt object
summary.smirt <- function( object, ...){
cat("-----------------------------------------------------------------\n")
d1 <- utils::packageDescription("sirt")
cat( paste( d1$Package, " ", d1$Version, " (", d1$Date, ")", sep=""), "\n\n" )
cat( "Date of Analysis:", paste( object$s2 ), "\n" )
cat("Computation Time:", print(object$s2 - object$s1), "\n\n")
cat(" Function 'smirt' \n")
if (object$irtmodel=="noncomp"){
cat(" Noncompensatory item response model\n\n")
}
if (object$irtmodel=="comp"){
cat(" Compensatory item response model\n\n")
}
if (object$irtmodel=="partcomp"){
cat(" Partially compensatory item response model\n\n")
}
# modeltype <- object$irtmodel
cat( " ", object$ic$n, "Cases, ", ncol(object$dat2), "Items, ", # object$G, "Group(s)", ",",
object$D, "Dimension(s)\n")
cat("-----------------------------------------------------------------\n")
cat( "Number of iterations=", object$iter, "\n" )
cat( "Deviance=", round( object$deviance, 2 ), " | " )
cat( "Log Likelihood=", round( -object$deviance/2, 2 ), "\n" )
cat( "Number of persons=", object$ic$n, "\n" )
cat( "Number of estimated parameters=", object$ic$np, "\n" )
cat( " Number of estimated item parameters=", object$ic$np.item, "\n" )
cat( " b parameters=", object$ic$np.item.b, "\n" )
cat( " a parameters=", object$ic$np.item.a, "\n" )
cat( " c parameters=", object$ic$np.item.c, "\n" )
cat( " d parameters=", object$ic$np.item.d, "\n" )
cat( " mu.i parameters=", object$ic$np.item.mu.i, "\n" )
cat( " Number of estimated distribution parameters=", object$ic$np.cov,
"\n" )
cat( " Means=", object$ic$np.cov.mu, "\n" )
cat( " Covariances=", object$ic$np.cov.covM, "\n" )
cat( "AIC=", round( object$ic$AIC, 2 ), " | penalty=", round( object$ic$AIC - object$ic$deviance,2 ),
" | AIC=-2*LL + 2*p \n" )
cat( "AICc=", round( object$ic$AICc, 2 )," | penalty=", round( object$ic$AICc - object$ic$deviance,2 ) )
cat(" | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1) (bias corrected AIC)\n" )
cat( "BIC=", round( object$ic$BIC, 2 ), " | penalty=", round( object$ic$BIC - object$ic$deviance,2 ),
" | BIC=-2*LL + log(n)*p \n" )
cat( "CAIC=", round( object$ic$CAIC, 2 )," | penalty=", round( object$ic$CAIC - object$ic$deviance,2 ) )
cat(" | CAIC=-2*LL + [log(n)+1]*p (consistent AIC)\n\n" )
cat("-----------------------------------------------------------------\n")
# cat("Trait Distribution\n")
# obji <- object$pi.k
cat( "\nM Trait:\n" )
print( round( object$mean.trait, 3 ) )
cat( "\nSD Trait:\n" )
print( round( object$sd.trait, 3 ) )
cat( "\nCorrelations Trait: \n" )
print( round( object$cor.trait, 3 ) )
cat( "\nEAP Reliability:\n" )
print( round( t(object$EAP.rel ), 3 ) )
cat("-----------------------------------------------------------------\n")
cat("Item Parameters \n")
obji <- object$item
obji[,-1] <- round( obji[,-1], 3)
print( obji )
# cat("\nMean of RMSEA item fit:",
# round( object$mean.rmsea,3 ), "\n")
}
#*******************************************************
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.