R/summary.smirt.R

Defines functions summary.smirt

Documented in summary.smirt

## File Name: summary.smirt.R
## File Version: 0.18
#*******************************************************
# Summary for smirt object
summary.smirt <- function( object, ...){
    cat("-----------------------------------------------------------------\n")
    d1 <- utils::packageDescription("sirt")
    cat( paste( d1$Package, " ", d1$Version, " (", d1$Date, ")", sep=""), "\n\n" )
    cat( "Date of Analysis:", paste( object$s2 ), "\n" )
    cat("Computation Time:", print(object$s2 - object$s1), "\n\n")
    cat("  Function 'smirt' \n")
    if (object$irtmodel=="noncomp"){
        cat("   Noncompensatory item response model\n\n")
                    }
    if (object$irtmodel=="comp"){
        cat("   Compensatory item response model\n\n")
                    }
    if (object$irtmodel=="partcomp"){
        cat("   Partially compensatory item response model\n\n")
                    }

#    modeltype <- object$irtmodel
        cat( "   ", object$ic$n, "Cases, ", ncol(object$dat2), "Items, ", # object$G, "Group(s)", ",",
                object$D, "Dimension(s)\n")

    cat("-----------------------------------------------------------------\n")
    cat( "Number of iterations=", object$iter, "\n" )
    cat( "Deviance=", round( object$deviance, 2 ), " | " )
    cat( "Log Likelihood=", round( -object$deviance/2, 2 ), "\n" )
    cat( "Number of persons=", object$ic$n, "\n" )

    cat( "Number of estimated parameters=", object$ic$np, "\n" )
    cat( "  Number of estimated item parameters=", object$ic$np.item, "\n" )
    cat( "               b parameters=", object$ic$np.item.b, "\n" )
    cat( "               a parameters=", object$ic$np.item.a, "\n" )
    cat( "               c parameters=", object$ic$np.item.c, "\n" )
    cat( "               d parameters=", object$ic$np.item.d, "\n" )
    cat( "            mu.i parameters=", object$ic$np.item.mu.i, "\n" )
    cat( "  Number of estimated distribution parameters=", object$ic$np.cov,
                "\n" )
    cat( "               Means=", object$ic$np.cov.mu, "\n" )
    cat( "               Covariances=", object$ic$np.cov.covM, "\n" )
    cat( "AIC=", round( object$ic$AIC, 2 ), " | penalty=", round( object$ic$AIC - object$ic$deviance,2 ),
            "   | AIC=-2*LL + 2*p  \n" )
    cat( "AICc=", round( object$ic$AICc, 2 )," | penalty=", round( object$ic$AICc - object$ic$deviance,2 ) )
        cat("    | AICc=-2*LL + 2*p + 2*p*(p+1)/(n-p-1)  (bias corrected AIC)\n" )
    cat( "BIC=", round( object$ic$BIC, 2 ), " | penalty=", round( object$ic$BIC - object$ic$deviance,2 ),
            "   | BIC=-2*LL + log(n)*p  \n" )
    cat( "CAIC=", round( object$ic$CAIC, 2 )," | penalty=", round( object$ic$CAIC - object$ic$deviance,2 ) )
        cat("   | CAIC=-2*LL + [log(n)+1]*p  (consistent AIC)\n\n" )

    cat("-----------------------------------------------------------------\n")
#    cat("Trait Distribution\n")
#    obji <- object$pi.k
    cat( "\nM Trait:\n" )
    print( round( object$mean.trait, 3 )  )
    cat( "\nSD Trait:\n" )
    print( round( object$sd.trait, 3 ) )
    cat( "\nCorrelations Trait: \n" )
    print( round( object$cor.trait, 3 ) )
    cat( "\nEAP Reliability:\n" )
    print( round( t(object$EAP.rel ), 3 ) )
    cat("-----------------------------------------------------------------\n")
    cat("Item Parameters \n")
    obji <- object$item
    obji[,-1] <- round( obji[,-1], 3)
    print( obji )
#  cat("\nMean of RMSEA item fit:",
#     round( object$mean.rmsea,3 ), "\n")
            }
#*******************************************************
alexanderrobitzsch/sirt documentation built on Sept. 8, 2024, 2:45 a.m.