Description Usage Arguments Value Author(s) Examples
View source: R/NormMixClus-functions.R
Calculates the mean and covariance parameters for a normal mixture model of the form pK_Lk_Ck
| 1 2 3 4 5 6 7 8 | NormMixParam(
  coseqResults,
  y_profiles = NULL,
  K = NULL,
  digits = 3,
  plot = FALSE,
  ...
)
 | 
| coseqResults | Object of class  | 
| y_profiles | y (n x q) matrix of observed profiles for n
observations and q variables, required for  | 
| K | The model used for parameter estimation for objects  | 
| digits | Integer indicating the number of decimal places to be used for output | 
| plot | If  | 
| ... | Additional optional parameters to pass to  | 
| pi  | Vector of dimension K with the estimated cluster proportions from the Gaussian mixture model, where K is the number of clusters | 
| mu  |  Matrix of dimension K x d containing the estimated mean
vector from the Gaussian mixture model, where d is the
number of samples in the data  | 
| Sigma  |  Array of dimension d x d x K containing the
estimated covariance matrices from the Gaussian mixture model, where d is the
number of samples in the data  | 
| rho  |  Array of dimension d x d x K containing the
estimated correlation matrices from the Gaussian mixture model, where d is the
number of samples in the data  | 
Andrea Rau, Cathy Maugis-Rabusseau
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
profiles <- transformRNAseq(countmat, norm="none",
                            transformation="arcsin")$tcounts
conds <- rep(c("A","B","C","D"), each=2)
## Run the Normal mixture model for K = 2,3
## Object of class coseqResults
run <- NormMixClus(y=profiles, K=2:3, iter=5)
run
## Run the Normal mixture model for K=2
## Object of class SummarizedExperiment0
run2 <- NormMixClusK(y=profiles, K=2, iter=5)
## Summary of results
summary(run)
## Re-estimate mixture parameters for the model with K=2 clusters
param <- NormMixParam(run, y_profiles=profiles)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.