Description Usage Arguments Details Value Author(s) References See Also Examples
A function to summarize the clustering results obtained from a Poisson or
Gaussian mixture model estimated using coseq
. In particular,
the function provides the number of clusters selected for the ICL
model selection approach (or alternatively, for the capushe non-asymptotic approach
if K-means clustering is used), number of genes assigned to each cluster, and
if desired the per-gene cluster means.
1 2 |
object |
An object of class |
y_profiles |
Data used for clustering if per-cluster means are desired |
digits |
Integer indicating the number of decimal places to be used for mixture model parameters |
... |
Additional arguments |
Provides the following summary of results:
1) Number of clusters and model selection criterion used, if applicable.
2) Number of observations across all clusters with a maximum conditional probability greater than 90 observations) for the selected model.
3) Number of observations per cluster with a maximum conditional probability greater than 90 cluster) for the selected model.
4) If desired, the μ values and π values for the selected model in the case of a Gaussian mixture model.
Summary of the coseqResults
object.
Andrea Rau
Rau, A. and Maugis-Rabusseau, C. (2017) Transformation and model choice for co-expression analayis of RNA-seq data. Briefings in Bioinformatics, doi: http://dx.doi.org/10.1101/065607.
Godichon-Baggioni, A., Maugis-Rabusseau, C. and Rau, A. (2017) Clustering transformed compositional data using K-means, with applications in gene expression and bicycle sharing system data. arXiv:1704.06150.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ## Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
conds <- rep(c("A","B","C","D"), each=2)
## Run the Normal mixture model for K = 2,3,4
run_arcsin <- coseq(object=countmat, K=2:4, iter=5, transformation="arcsin",
model="Normal", seed=12345)
run_arcsin
## Plot and summarize results
plot(run_arcsin)
summary(run_arcsin)
## Compare ARI values for all models (no plot generated here)
ARI <- compareARI(run_arcsin, plot=FALSE)
## Compare ICL values for models with arcsin and logit transformations
run_logit <- coseq(object=countmat, K=2:4, iter=5, transformation="logit",
model="Normal")
compareICL(list(run_arcsin, run_logit))
## Use accessor functions to explore results
clusters(run_arcsin)
likelihood(run_arcsin)
nbCluster(run_arcsin)
ICL(run_arcsin)
## Examine transformed counts and profiles used for graphing
tcounts(run_arcsin)
profiles(run_arcsin)
## Run the K-means algorithm for logclr profiles for K = 2,..., 20
run_kmeans <- coseq(object=countmat, K=2:20, transformation="logclr",
model="kmeans")
run_kmeans
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.