Description Usage Arguments Value Author(s) Examples
Provides the adjusted rand index (ARI) between pairs of clustering paritions.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | compareARI(object, ...)
## S4 method for signature 'coseqResults'
compareARI(
  object,
  K = NULL,
  parallel = FALSE,
  BPPARAM = bpparam(),
  plot = TRUE,
  ...
)
## S4 method for signature 'matrix'
compareARI(object, parallel = FALSE, BPPARAM = bpparam(), plot = TRUE, ...)
## S4 method for signature 'data.frame'
compareARI(object, parallel = FALSE, BPPARAM = bpparam(), plot = TRUE, ...)
 | 
| object | Object of class  | 
| ... | Additional optional parameters for corrplot | 
| K | If  | 
| parallel | If  | 
| BPPARAM | Optional parameter object passed internally to  | 
| plot | If  | 
Matrix of adjusted rand index values calculated between each pair of models.
Andrea Rau
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ## Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
conds <- rep(c("A","B","C","D"), each=2)
## Run the Normal mixture model for K = 2,3,4
run_arcsin <- coseq(object=countmat, K=2:4, iter=5, transformation="arcsin",
                    model="Normal", seed=12345)
run_arcsin
## Plot and summarize results
plot(run_arcsin)
summary(run_arcsin)
## Compare ARI values for all models (no plot generated here)
ARI <- compareARI(run_arcsin, plot=FALSE)
## Compare ICL values for models with arcsin and logit transformations
run_logit <- coseq(object=countmat, K=2:4, iter=5, transformation="logit",
                   model="Normal")
compareICL(list(run_arcsin, run_logit))
## Use accessor functions to explore results
clusters(run_arcsin)
likelihood(run_arcsin)
nbCluster(run_arcsin)
ICL(run_arcsin)
## Examine transformed counts and profiles used for graphing
tcounts(run_arcsin)
profiles(run_arcsin)
## Run the K-means algorithm for logclr profiles for K = 2,..., 20
run_kmeans <- coseq(object=countmat, K=2:20, transformation="logclr",
                    model="kmeans")
run_kmeans
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.