Description Usage Arguments Value Author(s) Examples
The counts slot holds the count data as a matrix of non-negative integer count values, one row for each observational unit (gene or the like), and one column for each sample.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | coseqFullResults(object, ...)
clusters(object, ...)
likelihood(object, ...)
nbCluster(object, ...)
proba(object, ...)
ICL(object, ...)
profiles(object, ...)
tcounts(object, ...)
transformationType(object, ...)
model(object, ...)
DDSEextract(object, ...)
Djumpextract(object, ...)
## S4 method for signature 'coseqResults'
clusters(object, K)
## S4 method for signature 'RangedSummarizedExperiment'
clusters(object, ...)
## S4 method for signature 'matrix'
clusters(object, ...)
## S4 method for signature 'data.frame'
clusters(object, ...)
## S4 method for signature 'MixmodCluster'
likelihood(object)
## S4 method for signature 'RangedSummarizedExperiment'
likelihood(object)
## S4 method for signature 'coseqResults'
likelihood(object)
## S4 method for signature ''NULL''
likelihood(object)
## S4 method for signature 'MixmodCluster'
nbCluster(object)
## S4 method for signature 'RangedSummarizedExperiment'
nbCluster(object)
## S4 method for signature 'coseqResults'
nbCluster(object)
## S4 method for signature ''NULL''
nbCluster(object)
## S4 method for signature 'MixmodCluster'
ICL(object)
## S4 method for signature 'RangedSummarizedExperiment'
ICL(object)
## S4 method for signature 'coseqResults'
ICL(object)
## S4 method for signature ''NULL''
ICL(object)
## S4 method for signature 'coseqResults'
profiles(object)
## S4 method for signature 'coseqResults'
tcounts(object)
## S4 method for signature 'coseqResults'
transformationType(object)
## S4 method for signature 'coseqResults'
model(object)
## S4 method for signature 'coseqResults'
coseqFullResults(object)
## S4 method for signature 'coseqResults'
show(object)
## S4 method for signature 'MixmodCluster'
proba(object)
## S4 method for signature 'Capushe'
DDSEextract(object)
## S4 method for signature 'Capushe'
Djumpextract(object)
|
object |
a |
... |
Additional optional parameters |
K |
numeric indicating the model to be used (if NULL of missing, the model chosen by ICL is used by default) |
Output varies depending on the method. clusters
returns a vector of cluster
labels for each gene for the desired model.
Andrea Rau
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | ## Simulate toy data, n = 300 observations
set.seed(12345)
countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4)
countmat <- countmat[which(rowSums(countmat) > 0),]
conds <- rep(c("A","B","C","D"), each=2)
## Run the Normal mixture model for K = 2,3,4
run_arcsin <- coseq(object=countmat, K=2:4, iter=5, transformation="arcsin",
model="Normal", seed=12345)
run_arcsin
## Plot and summarize results
plot(run_arcsin)
summary(run_arcsin)
## Compare ARI values for all models (no plot generated here)
ARI <- compareARI(run_arcsin, plot=FALSE)
## Compare ICL values for models with arcsin and logit transformations
run_logit <- coseq(object=countmat, K=2:4, iter=5, transformation="logit",
model="Normal")
compareICL(list(run_arcsin, run_logit))
## Use accessor functions to explore results
clusters(run_arcsin)
likelihood(run_arcsin)
nbCluster(run_arcsin)
ICL(run_arcsin)
## Examine transformed counts and profiles used for graphing
tcounts(run_arcsin)
profiles(run_arcsin)
## Run the K-means algorithm for logclr profiles for K = 2,..., 20
run_kmeans <- coseq(object=countmat, K=2:20, transformation="logclr",
model="kmeans")
run_kmeans
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.