#' Figure S9
#'
#' This function allows you generate figure S9.
#'
#' @keywords RNAseq ZMIZ1
#' @examples figureS9_siZMIZ1_ESR1_ZMIZ1_reads()
#' @import DESeq2
#' @import vulcan
#' @import ggpubr
#' @export
figureS9_siZMIZ1_ESR1_ZMIZ1_reads <- function() {
result_list <- list()
for (cells in c("MCF7")) {
for (time in unique(annotationTable$Treatment_Duration)) {
resname <- paste0(cells, "_", time)
message(resname)
subsamples <- annotationTable$Sample[annotationTable$Cells ==
cells & annotationTable$Treatment_Duration ==
time & annotationTable$Treatment == "Oestrogen"]
subraw <- rawcounts[, subsamples]
subannot <- annotationTable[annotationTable$Sample %in%
subsamples, c("Cells", "Condition", "Treatment")]
rownames(subannot) <- annotationTable$Sample[annotationTable$Sample %in%
subsamples]
subannot <- subannot[subsamples, ]
dds <- DESeqDataSetFromMatrix(countData = subraw,
colData = subannot, design = ~Condition)
dds <- dds[rowSums(counts(dds)) > 1, ]
dds$Condition <- relevel(dds$Condition, ref = "siCTRL")
dea <- DESeq(dds, parallel = TRUE)
res <- results(dea, contrast = c("Condition", "siZMIZ1",
"siCTRL"))
resannot <- cbind(rownames(res), eg2sym(rownames(res)))
annotations <- annotategene(rownames(res))
resannot <- cbind(as.matrix(resannot), as.matrix(annotations),
as.matrix(res))
colnames(resannot)[1:3] <- c("ENTREZID", "SYMBOL",
"NAME")
resannot <- as.data.frame(resannot)
resannot$log2FoldChange <- as.numeric(as.character(resannot$log2FoldChange))
resannot$stat <- as.numeric(as.character(resannot$stat))
resannot$pvalue <- as.numeric(as.character(resannot$pvalue))
resannot$padj <- as.numeric(as.character(resannot$padj))
resannot <- resannot[order(resannot$pvalue), ]
result_list[[resname]] <- resannot
rm(dea, resannot, res)
}
}
#ZMIZ1 is knocked down.
result_list[["MCF7_3h"]]["57178",]
result_list[["MCF7_6h"]]["57178",]
result_list[["MCF7_12h"]]["57178",]
result_list[["MCF7_24h"]]["57178",]
#ESR1 not signifantly different
result_list[["MCF7_3h"]]["2099",]
result_list[["MCF7_6h"]]["2099",]
result_list[["MCF7_12h"]]["2099",]
result_list[["MCF7_24h"]]["2099",]
for (cells in c("MCF7")) {
ZMIZ1expression<-matrix(ncol=5,nrow=0)
colnames(ZMIZ1expression)<-c("Cells" , "Condition","Treatment" ,"ZMIZ1" , "Time" )
for (time in unique(annotationTable$Treatment_Duration)) {
resname <- paste0(cells, "_", time)
message(resname)
subsamples <- annotationTable$Sample[annotationTable$Cells ==
cells & annotationTable$Treatment_Duration ==
time & annotationTable$Treatment == "Oestrogen"]
subraw <- rawcounts[, subsamples]
subrawZMIZ1<-subraw["57178",]
subannot <- annotationTable[annotationTable$Sample %in%
subsamples, c("Cells", "Condition", "Treatment")]
rownames(subannot) <- annotationTable$Sample[annotationTable$Sample %in%
subsamples]
subannot <- subannot[subsamples, ]
ZMIZ1expression<-rbind(ZMIZ1expression,cbind(subannot,ZMIZ1=subrawZMIZ1[rownames(subannot)],Time=time))
}
}
ZMIZ1expression<-ZMIZ1expression[ZMIZ1expression$Condition %in% c("siCTRL" , "siZMIZ1" ),]
ZMIZ1expression<-cbind(ZMIZ1expression,"LogZMIZ1"=log(ZMIZ1expression$ZMIZ1 ))
for (cells in c("MCF7")) {
ESR1expression<-matrix(ncol=5,nrow=0)
colnames(ESR1expression)<-c("Cells" , "Condition","Treatment" ,"ESR1" , "Time" )
for (time in unique(annotationTable$Treatment_Duration)) {
resname <- paste0(cells, "_", time)
message(resname)
subsamples <- annotationTable$Sample[annotationTable$Cells ==
cells & annotationTable$Treatment_Duration ==
time & annotationTable$Treatment == "Oestrogen"]
subraw <- rawcounts[, subsamples]
subrawESR1<-subraw["2099",]
subannot <- annotationTable[annotationTable$Sample %in%
subsamples, c("Cells", "Condition", "Treatment")]
rownames(subannot) <- annotationTable$Sample[annotationTable$Sample %in%
subsamples]
subannot <- subannot[subsamples, ]
ESR1expression<-rbind(ESR1expression,cbind(subannot,ESR1=subrawESR1[rownames(subannot)],Time=time))
}
}
ESR1expression<-ESR1expression[ESR1expression$Condition %in% c("siCTRL" , "siZMIZ1" ),]
ESR1expression<-cbind(ESR1expression,"LogESR1"=log(ESR1expression$ESR1 ))
colnames(ESR1expression)[4]<-"RawCounts"
colnames(ZMIZ1expression)[4]<-"RawCounts"
colnames(ESR1expression)[6]<-"LogCounts"
colnames(ZMIZ1expression)[6]<-"LogCounts"
expression<-rbind(cbind(ESR1expression,Gene="ESR1"),cbind(ZMIZ1expression,Gene="ZMIZ1"))
expression$Gene<-as.factor(expression$Gene)
p <- ggboxplot(expression, x = "Time", y = "RawCounts", palette = c("#00AFBB",
"#E7B800", "#FC4E07"), outlier.shape=NA, facet.by = "Gene", fill = "Condition")
p <- p + geom_point(aes(fill=factor(expression$Condition)),
size=1,
position = position_jitterdodge(dodge.width=0.8)) +ylab('Raw counts')
p
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.