Description Usage Arguments Value Author(s) See Also Examples
Exctract field and parameter values and distributions for an
inla.spde
SPDE effect from an inla result
object.
1 2 3 4 5 6 7 8 9 10 11 | inla.spde.result(...)
## S3 method for class 'inla.spde1'
inla.spde.result(inla, name, spde, do.transform = TRUE, ...)
## S3 method for class 'inla.spde2'
inla.spde.result(inla, name, spde, do.transform = TRUE, ...)
## Direct function call for class 'inla.spde1':
inla.spde1.result(inla, name, spde, do.transform = TRUE, ...)
## Direct function call for class 'inla.spde2':
inla.spde2.result(inla, name, spde, do.transform = TRUE, ...)
|
inla |
An |
name |
A character string with the name of the SPDE effect in the inla formula. |
spde |
The |
do.transform |
If |
... |
Further arguments passed to and from other methods. |
For inla.spde2
models, a list, where the nominal range and
variance are defined as the values that would have been obtained with
a stationary model and no boundary effects:
marginals.kappa |
Marginal densities for kappa |
marginals.log.kappa |
Marginal densities for log(kappa) |
marginals.log.range.nominal |
Marginal densities for log(range) |
marginals.log.tau |
Marginal densities for log(tau) |
marginals.log.variance.nominal |
Marginal densities for log(variance) |
marginals.range.nominal |
Marginal densities for range |
marginals.tau |
Marginal densities for tau |
marginals.theta |
Marginal densities for the theta parameters |
marginals.values |
Marginal densities for the field values |
marginals.variance.nominal |
Marginal densities for variance |
summary.hyperpar |
The SPDE related part of the inla hyperpar output summary |
summary.log.kappa |
Summary statistics for log(kappa) |
summary.log.range.nominal |
Summary statistics for log(range) |
summary.log.tau |
Summary statistics for log(tau) |
summary.log.variance.nominal |
Summary statistics for log(kappa) |
summary.theta |
Summary statistics for the theta parameters |
summary.values |
Summary statistics for the field values |
Finn Lindgren finn.lindgren@gmail.com
inla.spde.models
,
inla.spde2.matern
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | loc = matrix(runif(100*2),100,2)
mesh = inla.mesh.create.helper(points.domain=loc, max.edge=c(0.1,0.5))
spde = inla.spde2.matern(mesh)
index = inla.spde.make.index("spatial", mesh$n, n.repl=2)
spatial.A = inla.spde.make.A(mesh, loc,
index=rep(1:nrow(loc), 2),
repl=rep(1:2, each=nrow(loc)))
## Toy example with no spatial correlation (range=zero)
y = 10+rnorm(100*2)
stack = inla.stack(data=list(y=y),
A=list(spatial.A),
effects=list(c(index, list(intercept=1))),
tag="tag")
data = inla.stack.data(stack, spde=spde)
formula = y ~ -1 + intercept + f(spatial, model=spde,
replicate=spatial.repl)
result = inla(formula, family="gaussian", data=data,
control.predictor=list(A=inla.stack.A(stack)))
spde.result = inla.spde.result(result, "spatial", spde)
plot(spde.result$marginals.range.nominal[[1]], type="l")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.