R/independent.models.R

Defines functions independent.models

Documented in independent.models

# Copyright (C) 2008-2012 Olli-Pekka Huovilainen and Leo Lahti Contact: Leo Lahti
# <leo.lahti@iki.fi> This program is free software; you can redistribute it
# and/or modify it under the terms of the GNU General Public License as published
# by the Free Software Foundation; either version 2, or (at your option) any
# later version.  This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
# more details.  Acknowledgements: This program is based on the AIVGA
# Agglomerative Independent Variable Group Analysis package (v. 1.0) Copyright
# (C) 2001-2007 Esa Alhoniemi, Antti Honkela, Krista Lagus, Jeremias Seppa, Harri
# Valpola, and Paul Wagner.

#' independent.models
#' 
#' Mainly for internal use. Provide independent models for each node.
#'
#' @param datamatrix datamatrix
#' @param params parameters
#' @return 
#'   \item{nodes }{Model for each node} 
#'   \item{C }{Costs for individual models}
#' @author Leo Lahti \email{leo.lahti@@iki.fi}
#' @references See citation('netresponse')
#' @export
#' @examples res <- independent.models(datamatrix = NULL, params = NULL)
#' @keywords internal
independent.models <- function(datamatrix, params) {

    if (is.null(datamatrix)) {return(NULL)}

    # Storage list for calculated models
    model.nodes <- vector(length = ncol(datamatrix), mode = "list")  # individual nodes
    
    if (params$verbose) {
        message("Compute cost for each variable")
    }
    
    C <- vector(length = ncol(datamatrix), mode = "numeric")
    
    # FIXME parallelize?
    for (k in seq_len(ncol(datamatrix))) {
        
        node <- colnames(datamatrix)[[k]]
        
        if (params$verbose) {
            message(paste("Computing model for node", k, "/", ncol(datamatrix)))
        }
        
        Nparams <- NULL
        
        model.params <- mixture.model(matrix(datamatrix[, node], nrow(datamatrix)), 
            mixture.method = params$mixture.method, max.responses = params$max.responses, 
            implicit.noise = params$implicit.noise, prior.alpha = params$prior.alpha, 
            prior.alphaKsi = params$prior.alphaKsi, prior.betaKsi = params$prior.betaKsi, 
            vdp.threshold = params$vdp.threshold, initial.responses = params$initial.responses, 
            ite = params$ite, speedup = params$speedup, bic.threshold = params$bic.threshold, 
            pca.basis = params$pca.basis)
        
        # Cost for model
        C[[k]] <- info.criterion(model.params$Nparams, params$Nlog, -model.params$free.energy, 
            criterion = params$information.criterion)
        
        model.nodes[[k]] <- model.params
        
    }
    
    gc()
    
    if (params$verbose) {
        message("independent models done")
    }
    
    list(nodes = model.nodes, C = C)
    
}
antagomir/netresponse documentation built on March 30, 2023, 7:24 a.m.