R/dfpsuniv.R

Defines functions dfpsuniv

dfpsuniv <- function(time, time2=NULL, status, nl.predictors, other.predictors, smoother, method, mindf=NULL, maxdf=NULL, ntimes=NULL, data) {
	options(warn=-1);
	ctype <- "FALSE";
	if ( missing(data) ) {stop("The argument data is missing");}
	if ( missing(time) ) {stop("The argument time is missing");}
	if ( missing(status) ) {stop("The argument status is missing");}
	if ( missing(nl.predictors) ) {stop("The argument 'nl.predictors' is missing");}
	if ( !missing(time2) ) {ctype <- "TRUE";}
	if ( missing(smoother) ) {smoother <- "ns";}
	if (smoother != "ns" & smoother != "pspline") {stop("argument 'smoother' must be 'ns' or 'pspline'");}
	if ( missing(method) ) {method <- "AIC";}
	if ( missing(mindf) ) {mindf <- 1.5;}
	if ( missing(ntimes) ) {ntimes <- 5;}
	if ( method != "AIC" & method != "AICc" & method != "BIC") {stop("The argument 'method' is not valid");}
	if (ntimes < 2 | ntimes > 10) {stop("The argument 'ntimes' must be between 2 and 10");}
	p0 <- match(names(data), time, nomatch=0);
	p1 <- which(p0 == 1);
	ntime <- data[,p1];
	if (sum(p0) == 0) {stop("variable defined in argument 'time' is not in the dataset 'data'");}
	p2 <- match(names(data), status, nomatch=0);
	p3 <- which(p2 == 1);
	nstatus <- data[,p3];
	if (sum(p2) == 0) {stop("variable defined in argument 'status' is not in the dataset 'data'");}
	if (ctype == TRUE) {
		p2 <- match(names(data), time2, nomatch=0);
		if (sum(p2) == 0) {stop("variable defined in argument 'time2' is not in the dataset 'data'");}
		p3 <- which(p2 == 1);
		ntime2 <- data[,p3];
	}
	p2 <- match(names(data), nl.predictors[1], nomatch=0);
	if (sum(p2)==0) {stop("Check variables in argument 'nl.predictors'");}
	if ( !missing(other.predictors) ) {
		nop <- length(other.predictors);
		for (i in 1:nop) {
			p2 <- match(names(data), other.predictors[i], nomatch=0);
			if (sum(p2) == 0) {stop("Check variables in argument 'other.predictors'");}
		}
	}
	if (dim(table(nl.predictors)) < 1) {stop("Check variables in argument nl.predictors");}
	if ( !missing(other.predictors) ) {
		nop <- length(other.predictors);
		if (dim( table(other.predictors) ) < nop) {stop("Check variables in argument other.predictors");}
		all.predictors <- c(other.predictors, nl.predictors);
		if (dim( table(all.predictors) ) < nop+1) {stop("Check variables in argument's nl.predictors and other.predictors");}
	}
	if (method == "AIC") {
		if ( !missing(other.predictors) ) {opred <- paste(other.predictors, collapse="+");}
		npred0 <- paste("pspline(", nl.predictors, ", df=0)", collapse="+");
		if ( !missing(other.predictors) ) {pred <- paste(npred0, opred, sep="+");}
		else {pred <- npred0;}
	} else if (method == "AICc") {
		if ( !missing(other.predictors) ) {opred <- paste(other.predictors, collapse="+");}
		npred0 <- paste("pspline(", nl.predictors, ", df=0, caic=TRUE)", collapse="+");
		if ( !missing(other.predictors) ) {pred <- paste(npred0, opred, sep="+");}
		else {pred <- npred0;}
	} else if (method=="BIC") {
		if ( !missing(other.predictors) ) {opred <- paste(other.predictors, collapse="+");}
		npred0 <- paste("pspline(", nl.predictors, ", df=0)", collapse="+");
		if ( !missing(other.predictors) ) {pred <- paste(npred0, opred, sep="+");}
		else {pred <- npred0;}
	}
	#ndf <- paste("df[",1,"]", sep="");
	if (ctype == "TRUE") {
		p4 <- match(names(data), time2, nomatch=0);
		p5 <- which(p4 == 1);
		ntime2 <- data[,p5];
		covar <- as.formula( paste(" Surv(ntime,ntime2,nstatus)~ ", pred) );
		fit <- coxph(covar, data=data, x=TRUE);
	} else {
		covar <- as.formula( paste(" Surv(ntime,nstatus)~ ", pred) );
		fit <- coxph(covar, data=data, x=TRUE);
	}
	fit1 <- fit;
	ndf1 <- fit$df[1];
	if ( !missing(maxdf) ) {ndf1 <- maxdf;}
	if (method == "BIC") {
		df0 <- 1.5;
		if ( !missing(mindf) ) {df0 <- mindf;}
		df1 <- ndf1;
		df2 <- cbind(df0, (df0+df1)/2, df1);
		for (i in 1:ntimes) {
			aaa <- lapply(apply(df2, 1, function(z) {list(c(z[1],z[2],z[3]) );}), function(y) {unlist(y);});
			out <- do.call(expand.grid, aaa);
			myaic <- rep(100000, dim(out)[1]);
			for (k in 1:dim(out)[1]) {
				df <- out[k,];
				npred1 <- paste("pspline(", nl.predictors, ",df=", df, ")", collapse="+");
				if ( !missing(other.predictors) ) {pred1 <- paste(npred1, opred, sep="+");}
				else {pred1 <- npred1;}
				if (ctype == "TRUE") {
					covar <- as.formula( paste(" Surv(ntime,ntime2,nstatus)~ ", pred1) );
					try(fit1 <- coxph(covar, data=data, x=TRUE), TRUE);
				} else {
					covar <- as.formula( paste(" Surv(ntime,nstatus)~ ", pred1) );
					try(fit1 <- coxph(covar, data=data, x=TRUE), TRUE);
				}
				try(myaic[k] <- -2*fit1$loglik[2]+log(fit1$nevent)*sum(fit1$df), TRUE);
			}
			p <- which.min(myaic);
			ndf1 <- vector(length=1);
			ndf1 <- out[p,1];
			aic <- myaic[p];
			ndf2 <- df2;
			if (ndf1 == df2[1,1]) {
				a1 <- df2[1,1];
				a2 <- df2[1,2];
				a3 <- (df2[1,1]+df2[1,2])/2;
				ndf2[1,] <- sort( c(a1, a2, a3) );
			}
			if (ndf1 == df2[1,3]) {
				a1 <- df2[1,3];
				a2 <- df2[1,2];
				a3 <- (df2[1,3]+df2[1,2])/2;
				ndf2[1,] <- sort( c(a1, a2, a3) );
			}
			if (ndf1 == df2[1,2]) {
				p <- c();
				for ( t in 1:3 ) {
					if ( out[t,1] != ndf1 ) {p <- c(p, t);}
				}
				p1 <- which.min(myaic[p]);
				if (p1 == 1) {a2 <- df2[1,1];}
				else {a2 <- df2[1,3];}
				a1 <- ndf1;
				a2 <- a2;
				a3 <- (ndf1+a2)/2;
				a4 <- sort( c(a1, a2, a3) );
				ndf2[1,] <- a4;
			}
			df2 <- ndf2;
		}
	}
	ndf1 <- round(ndf1, 1);
	npred1 <- paste("pspline(", nl.predictors, ",df=", ndf1, ")", collapse="+");
	if ( !missing(other.predictors) ) {pred1 <- paste(npred1, opred, sep="+");}
	else {pred1 <- npred1;}
	if (ctype == "TRUE") {
		covar <- as.formula( paste(" Surv(ntime,ntime2,nstatus)~ ", pred1) );
		try(fit1 <- coxph(covar, data=data, x=TRUE), TRUE);
	} else {
		covar <- as.formula( paste(" Surv(ntime,nstatus)~ ", pred1) );
		try(fit1 <- coxph(covar, data=data, x=TRUE), TRUE);
	}
	mydf <- fit1$df[1];
	options(warn=0);
	return(mydf);
} # dfpsuniv
arturstat/smoothHR documentation built on March 1, 2024, 9:14 a.m.