#######################################################################
# #
# Package: onemap #
# #
# File: order_seq.R #
# Contains: order_seq, print.order, draw_order #
# #
# Written by Gabriel R A Margarido & Marcelo Mollinari with minor #
# changes by Cristiane Taniguti
# copyright (c) 2009, Gabriel R A Margarido & Marcelo Mollinari #
# #
# First version: 02/27/2009 #
# License: GNU General Public License version 2 (June, 1991) or later #
# #
#######################################################################
## This function automates linkage map construction in two steps:
## first, it applies the 'compare' algorithm to a subset of markers;
## second, it adds markers sequentially with the 'try' function
##' Search for the best order of markers combining compare and try_seq
##' functions
##'
##' For a given sequence of markers, this function first uses the
##' \code{compare} function to create a framework for a subset of informative
##' markers. Then, it tries to map remaining ones using the \code{try_seq}
##' function.
##'
##' For outcrossing populations, the initial subset and the order in which
##' remaining markers will be used in the \code{try_seq} step is given by the
##' degree of informativeness of markers (i.e markers of type A, B, C and D, in
##' this order).
##'
##' For backcrosses, F2s or RILs, two methods can be used for
##' choosing the initial subset: i) \code{"sample"} randomly chooses a number
##' of markers, indicated by \code{n.init}, and calculates the multipoint
##' log-likelihood of the \eqn{\frac{n.init!}{2}}{n.init!/2} possible orders.
##' If the LOD Score of the second best order is greater than
##' \code{subset.THRES}, than it takes the best order to proceed with the
##' \code{try_seq} step. If not, the procedure is repeated. The maximum number
##' of times to repeat this procedure is given by the \code{subset.n.try}
##' argument. ii) \code{"twopt"} uses a two-point based algorithm, given by the
##' option \code{"twopt.alg"}, to construct a two-point based map. The options
##' are \code{"rec"} for RECORD algorithm, \code{"rcd"} for Rapid Chain
##' Delineation, \code{"ser"} for Seriation and \code{"ug"} for Unidirectional
##' Growth. Then, equally spaced markers are taken from this map. The
##' \code{"compare"} step will then be applied on this subset of markers.
##'
##' In both cases, the order in which the other markers will be used in the
##' \code{try_seq} step is given by marker types (i.e. co-dominant before
##' dominant) and by the missing information on each marker.
##'
##' After running the \code{compare} and \code{try_seq} steps, which result in
##' a "safe" order, markers that could not be mapped are "forced" into the map,
##' resulting in a map with all markers positioned.
##'
##'@importFrom graphics abline axis layout lines par plot points text title
##'
##' @param input.seq an object of class \code{sequence}.
##' @param n.init the number of markers to be used in the \code{compare} step
##' (defaults to 5).
##' @param subset.search a character string indicating which method should be
##' used to search for a subset of informative markers for the
##' \code{\link{compare}} step. It is used for backcross, \eqn{F_2}{F_2} or RIL
##' populations, but not for outcrosses. See the \code{Details} section.
##' @param subset.n.try integer. The number of times to repeat the subset
##' search procedure. It is only used if \code{subset.search=="sample"}. See
##' the \code{Details} section.
##' @param subset.THRES numerical. The threshold for the subset search
##' procedure. It is only used if \code{subset.search=="sample"}. See the
##' \code{Details} section.
##' @param twopt.alg a character string indicating which two-point algorithm
##' should be used if \code{subset.search=="twopt"}. See the \code{Details}
##' section.
##' @param THRES threshold to be used when positioning markers in the
##' \code{try_seq} step.
##' @param touchdown logical. If \code{FALSE} (default), the \code{try_seq}
##' step is run only once, with the value of \code{THRES}. If \code{TRUE},
##' \code{try_seq} runs with \code{THRES} and then once more, with
##' \code{THRES-1}. The latter calculations take longer, but usually are able
##' to map more markers.
##' @param tol tolerance number for the C routine, i.e., the value used to
##' evaluate convergence of the EM algorithm.
##' @param rm_unlinked When some pair of markers do not follow the linkage criteria,
##' if \code{TRUE} one of the markers is removed and returns a vector with remaining
##' marker numbers (useful for mds_onemap and map_avoid_unlinked functions).
##' @param verbose A logical, if TRUE its output progress status
##' information.
##'
##' @return An object of class \code{order}, which is a list containing the
##' following components: \item{ord}{an object of class \code{sequence}
##' containing the "safe" order.} \item{mrk.unpos}{a \code{vector} with
##' unpositioned markers (if they exist).} \item{LOD.unpos}{a \code{matrix}
##' with LOD-Scores for unmapped markers, if any, for each position in the
##' "safe" order.} \item{THRES}{the same as the input value, just for
##' printing.} \item{ord.all}{an object of class \code{sequence} containing the
##' "forced" order, i.e., the best order with all markers.}
##' \item{data.name}{name of the object of class \code{onemap} with the raw
##' data.} \item{twopt}{name of the object of class \code{rf_2pts} with the
##' 2-point analyses.}
##'
##' @author Gabriel R A Margarido, \email{gramarga@@usp.br} and Marcelo
##' Mollinari, \email{mmollina@@gmail.com}
##' @seealso \code{\link[onemap]{make_seq}}, \code{\link[onemap]{compare}} and
##' \code{\link[onemap]{try_seq}}.
##' @references Broman, K. W., Wu, H., Churchill, G., Sen, S., Yandell, B.
##' (2008) \emph{qtl: Tools for analyzing QTL experiments} R package version
##' 1.09-43
##'
##' Jiang, C. and Zeng, Z.-B. (1997). Mapping quantitative trait loci with
##' dominant and missing markers in various crosses from two inbred lines.
##' \emph{Genetica} 101: 47-58.
##'
##' Lander, E. S. and Green, P. (1987). Construction of multilocus genetic
##' linkage maps in humans. \emph{Proc. Natl. Acad. Sci. USA} 84: 2363-2367.
##'
##' Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln,
##' S. E. and Newburg, L. (1987) MAPMAKER: An interactive computer package for
##' constructing primary genetic linkage maps of experimental and natural
##' populations. \emph{Genomics} 1: 174-181.
##'
##' Mollinari, M., Margarido, G. R. A., Vencovsky, R. and Garcia, A. A. F.
##' (2009) Evaluation of algorithms used to order markers on genetics maps.
##' \emph{Heredity} 103: 494-502.
##'
##' Wu, R., Ma, C.-X., Painter, I. and Zeng, Z.-B. (2002a) Simultaneous maximum
##' likelihood estimation of linkage and linkage phases in outcrossing species.
##' \emph{Theoretical Population Biology} 61: 349-363.
##'
##' Wu, R., Ma, C.-X., Wu, S. S. and Zeng, Z.-B. (2002b). Linkage mapping of
##' sex-specific differences. \emph{Genetical Research} 79: 85-96
##' @keywords utilities
##' @examples
##'
##' \donttest{
##' #outcross example
##' data(onemap_example_out)
##' twopt <- rf_2pts(onemap_example_out)
##' all_mark <- make_seq(twopt,"all")
##' groups <- group(all_mark)
##' LG2 <- make_seq(groups,2)
##' LG2.ord <- order_seq(LG2,touchdown=TRUE)
##' LG2.ord
##' make_seq(LG2.ord) # get safe sequence
##' make_seq(LG2.ord,"force") # get forced sequence
##'
##' }
##'@export
order_seq <- function(input.seq,
n.init=5,
subset.search=c("twopt", "sample"),
subset.n.try=30,
subset.THRES=3,
twopt.alg= c("rec", "rcd", "ser", "ug"),
THRES=3,
touchdown=FALSE,
tol=10E-2,
rm_unlinked = FALSE,
verbose = FALSE) {
## checking for correct objects
if(!inherits(input.seq,"sequence")) stop(deparse(substitute(input.seq))," is not an object of class 'sequence'")
if(n.init < 2) stop("'n.init' must be greater than or equal to 2")
if(!is.logical(touchdown)) stop("'touchdown' must be logical")
if(!touchdown && THRES <= 10E-10) stop("Threshold must be greater than 0 if 'touchdown' is FALSE")
if(touchdown && THRES <= (1 + 10E-10)) stop("Threshold must be greater than 1 if 'touchdown' is TRUE")
if(length(input.seq$seq.num) <= n.init) {
## in this case, only the 'compare' function is used
if(verbose) cat(" Length of sequence ",deparse(substitute(input.seq))," is less than n.init \n Returning the best order using compare function:\n")
ifelse(length(input.seq$seq.num) == 2, seq.ord <- map(input.seq,tol=10E-5, rm_unlinked = rm_unlinked), seq.ord <- make_seq(compare(input.seq=input.seq,tol=10E-5),1))
seq.ord<-map(seq.ord, tol=10E-5, rm_unlinked = rm_unlinked)
structure(list(ord=seq.ord, mrk.unpos=NULL, LOD.unpos=NULL, THRES=THRES,
ord.all=seq.ord, data.name=input.seq$data.name, probs = seq.ord$probs, twopt=input.seq$twopt), class = "order")
} else {
## here, the complete algorithm will be applied
cross.type <- class(input.seq$data.name)[2]
if(cross.type == "f2") FLAG <- "f2"
else if (cross.type == "backcross" ||
cross.type == "riself" ||
cross.type == "risib") FLAG <- "bc"
else if (cross.type == "outcross") FLAG <- "outcross"
else stop("Invalid cross type\n")
## select the order in which markers will be added
if(FLAG == "bc"){
subset.search <- match.arg(subset.search)
if(subset.search == "twopt"){
if(verbose) cat("\nCross type: ", cross.type, "\nChoosing initial subset using 'two-point' approach\n")
twopt.alg <- match.arg(twopt.alg)
tpt.type <- switch(EXPR=twopt.alg,
'rec'={
seq.rec<-record(input.seq=input.seq,tol=0.1)$seq.num ##ordering using RECORD algorithm
seq.init<-seq.rec[unique(round(seq(from=1, to=length(seq.rec), length.out=n.init)))] ##taking equally spaced markers
},
'rcd'={
seq.rcd<-rcd(input.seq=input.seq,tol=0.1)$seq.num ##ordering using RCD algorithm
seq.init<-seq.rcd[unique(round(seq(from=1, to=length(seq.rcd), length.out=n.init)))] ##taking equally spaced markers
},
'ser'={
seq.ser<-seriation(input.seq=input.seq,tol=0.1)$seq.num ##ordering using SERIATION algorithm
seq.init<-seq.ser[unique(round(seq(from=1, to=length(seq.ser), length.out=n.init)))] ##taking equally spaced markers
},
'ug'={
seq.ug<-ug(input.seq=input.seq,tol=0.1)$seq.num ##ordering using UG algorithm
seq.init<-seq.ug[unique(round(seq(from=1, to=length(seq.ug), length.out=n.init)))] ##taking equally spaced markers
})
##if(is.null(tpt.type)) stop("Invalid two point method")
seq.rest <- input.seq$seq.num[-pmatch(seq.init, input.seq$seq.num)] ##the rest of the markers
seq.mis <- apply(as.matrix(input.seq$data.name$geno[,seq.rest]), 2, function(x) sum(x==0)) ##checking missing markers for the rest
names(seq.mis)<-colnames(input.seq$data.name$geno)[seq.rest]
if(FLAG == "bc") {
rest.ord <- pmatch(names(seq.mis), colnames(input.seq$data.name$geno))
seq.work <- pmatch(c(seq.init,rest.ord), input.seq$seq.num)
}
else stop("Invalid cross type\n")
}
else if(subset.search=="sample"){
if(verbose) cat("\nCross type: ", cross.type, "\nChoosing initial subset using the 'sample' approach\n")
LOD.test <- i <- 0
while(abs(LOD.test) < abs(subset.THRES) && i < subset.n.try){
smp.seq <- make_seq(input.seq$twopt, sample(input.seq$seq.num, size=n.init), twopt=input.seq$twopt)
res.test <- compare(smp.seq)
LOD.test <- res.test$best.ord.LOD[2]
i < -i+1
}
if(abs(LOD.test) >= abs(subset.THRES)){
seq.init <- res.test$best.ord[1,] ##best order based on 'compare'
seq.rest <- input.seq$seq.num[-pmatch(seq.init, input.seq$seq.num)] ##the rest of the markers
seq.mis <- apply(as.matrix(input.seq$data.name$geno[,seq.rest]), 2, function(x) sum(x==0)) ##checking missing markers for the rest
names(seq.mis)<-colnames(input.seq$data.name$geno)[seq.rest]
if(FLAG == "bc"){
rest.ord <- pmatch(names(seq.mis), colnames(input.seq$data.name$geno))
seq.work <- pmatch(c(seq.init,rest.ord), input.seq$seq.num)
}
else stop("Invalid cross type\n")
}
else stop("Cannot find any subset using 'subset.n.try'=", subset.n.try, " and 'subset.THRES'= ", subset.THRES,"\n")
}
## else stop("Invalid subset search\n")
}
else if(FLAG == "outcross" || FLAG == "f2") {
if(verbose) cat(paste("\nCross type:", FLAG, "\nUsing segregation types of the markers to choose initial subset\n"))
segregation.types <- input.seq$data.name$segr.type.num[input.seq$seq.num]
if(sum(segregation.types == 7) > sum(segregation.types == 6)) segregation.types[segregation.types == 6] <- 8 ## if there are more markers of type D2 than D1, try to map those first
seq.work <- order(segregation.types)
seq.init <- input.seq$seq.num[seq.work[1:n.init]]
}
else stop("Invalid cross type")
##apply the 'compare' step to the subset of initial markers
seq.ord <- compare(input.seq=make_seq(input.seq$twopt, seq.init, twopt=input.seq$twopt), n.best=50)
## 'try' to map remaining markers
input.seq2 <- make_seq(seq.ord,1)
if(verbose) cat ("\n\nRunning try algorithm\n")
for (i in (n.init+1):length(input.seq$seq.num)){
seq.ord <- try_seq(input.seq2,input.seq$seq.num[seq.work[i]],tol=tol, verbose = verbose)
if(all(seq.ord$LOD[-which(seq.ord$LOD==max(seq.ord$LOD))[1]] < -THRES))
input.seq2 <- make_seq(seq.ord,which.max(seq.ord$LOD))
}
## markers that do not meet the threshold remain unpositioned
mrk.unpos <- input.seq$seq.num[which(is.na(match(input.seq$seq.num, input.seq2$seq.num)))]
LOD.unpos <- NULL
if(verbose) {
cat("\nLOD threshold =",THRES,"\n\nPositioned markers:", input.seq2$seq.num, "\n\n")
cat("Markers not placed on the map:", mrk.unpos, "\n")
}
if(touchdown && length(mrk.unpos) > 0) {
## here, a second round of the 'try' algorithm is performed, if requested
if(verbose) cat("\n\n\nTrying to map remaining markers with LOD threshold ",THRES-1,"\n")
for (i in mrk.unpos) {
seq.ord <- try_seq(input.seq2,i,tol=tol, verbose = verbose)
if(all(seq.ord$LOD[-which(seq.ord$LOD==max(seq.ord$LOD))[1]] < (-THRES+1)))
input.seq2 <- make_seq(seq.ord,which.max(seq.ord$LOD))
}
## markers that do not meet this second threshold still remain unpositioned
mrk.unpos <- input.seq$seq.num[which(is.na(match(input.seq$seq.num, input.seq2$seq.num)))]
if(verbose){
cat("\nLOD threshold =",THRES-1,"\n\nPositioned markers:", input.seq2$seq.num, "\n\n")
cat("Markers not placed on the map:", mrk.unpos, "\n")
}
}
if(length(mrk.unpos) > 0) {
## LOD-Scores are calculated for each position, for each unmapped marker, if any
LOD.unpos <- matrix(NA,length(mrk.unpos),(length(input.seq2$seq.num)+1))
j <- 1
if(verbose) cat("\n\nCalculating LOD-Scores\n")
for (i in mrk.unpos){
LOD.unpos[j,] <- try_seq(input.seq=input.seq2,mrk=i,tol=tol, verbose = verbose)$LOD
j <- j+1
}
}
else mrk.unpos <- NULL
## to end the algorithm, possibly remaining markers are 'forced' into the map
input.seq3 <- input.seq2
if(!is.null(mrk.unpos)) {
if(verbose) cat("\n\nPlacing remaining marker(s) at most likely position\n")
## these markers are added from the least to the most doubtful
which.order <- order(apply(LOD.unpos,1,function(x) max(x[-which(x==0)[1]])))
for (i in mrk.unpos[which.order]) {
seq.ord <- try_seq(input.seq3,i,tol, verbose = verbose)
input.seq3 <- make_seq(seq.ord,which(seq.ord$LOD==0)[sample(sum(seq.ord$LOD==0))[1]])
}
}
if(verbose) cat("\nEstimating final genetic map using tol = 10E-5.\n\n")
input.seq2<-map(input.seq2, tol=10E-5, rm_unlinked=rm_unlinked)
input.seq3<-map(input.seq3, tol=10E-5, rm_unlinked=rm_unlinked)
structure(list(ord=input.seq2, mrk.unpos=mrk.unpos, LOD.unpos=LOD.unpos, THRES=THRES,
ord.all=input.seq3, data.name=input.seq$data.name, probs2 = input.seq2$probs,
probs3 = input.seq3$probs, twopt=input.seq$twopt), class = "order")
}
}
##'Print order_seq object
##'
##'@param x object of class order_seq
##'@param ... currently ignored
##'
##'@return printed information about order_seq object
##'@export
##'
##'
##'@method print order
print.order <- function(x,...) {
cat("\nBest sequence found.")
## print the 'safe' order
print(x$ord)
if(!is.null(x$mrk.unpos)) {
## print LOD-Score information for unpositioned markers
cat("\n\nThe following markers could not be uniquely positioned.\n")
cat("Printing most likely positions for each unpositioned marker:\n")
size1 <- max(3,max(nchar(x$mrk.unpos)))
mrk.unpos.pr <- format(x$mrk.unpos,width=size1)
size2 <- max(nchar(x$ord$seq.num))
seq.pr <- format(x$ord$seq.num,width=size2)
######limit <- (x$THRES-2)/2 ## previously used limit
cat("\n")
cat(paste(rep("-",size2+4+length(mrk.unpos.pr)*(size1+3)),collapse=""),"\n")
cat("| ",rep("",size2),"|")
###### MAYBE WE SHOULD PUT A LIMIT TO THE NUMBER OF UNPOSITIONED MARKERS
for(j in 1:length(mrk.unpos.pr)) {
cat(rep("",max(0,3-size1)+1),mrk.unpos.pr[j],"|")
}
cat("\n")
cat(paste("|",paste(rep("-",size2+2),collapse=""),"|",sep=""))
cat(paste(rep(paste(paste(rep("-",size1+2),collapse=""),"|",sep=""),length(mrk.unpos.pr)),collapse=""),"\n")
cat("| ",rep("",size2),"|")
for(j in 1:length(x$mrk.unpos)) {
if(x$LOD.unpos[j,1] > -0.0001) cat(rep("",max(0,3-size1)+1),"*** |")
else if(x$LOD.unpos[j,1] > -1.0) cat(rep("",max(0,3-size1)+1),"** |")
else if(x$LOD.unpos[j,1] > -2.0) cat(rep("",max(0,3-size1)+1),"* |")
else cat(rep("",max(0,3-size1)+1)," |")
}
cat("\n")
for(i in 1:length(seq.pr)) {
cat("|",seq.pr[i],"|")
cat(paste(rep(paste(paste(rep(" ",size1+2),collapse=""),"|",sep=""),length(mrk.unpos.pr)),collapse=""),"\n")
cat(paste("|",paste(rep(" ",size2+2),collapse=""),"|",sep=""))
for(j in 1:length(x$mrk.unpos)) {
if(x$LOD.unpos[j,i+1] > -0.0001) cat(rep("",max(0,3-size1)+1),"*** |")
else if(x$LOD.unpos[j,i+1] > -1.0) cat(rep("",max(0,3-size1)+1),"** |")
else if(x$LOD.unpos[j,i+1] > -2.0) cat(rep("",max(0,3-size1)+1),"* |")
else cat(rep("",max(0,3-size1)+1)," |")
}
cat("\n")
}
cat(paste(rep("-",size2+4+length(mrk.unpos.pr)*(size1+3)),collapse=""),"\n")
cat("\n")
cat("'***' indicates the most likely position(s) (LOD = 0.0)\n\n")
cat("'**' indicates very likely positions (LOD > -1.0)\n\n")
cat("'*' indicates likely positions (LOD > -2.0)\n\n")
}
}
draw_order<-function(map.input){
.Defunct(msg = "Defunct since version 2.0.9")
}
## end of file
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.