library(KeyPathwayMineR)
# prepare single cell data from limb muscle
limb_muscle_droplet <- readRDS("droplet.normalized.Limb_Muscle.rds")
colData(limb_muscle_droplet)$age_class <- as.character(colData(limb_muscle_droplet)$mouse.id)
ind_young <- grep("^[13]-" ,colData(limb_muscle_droplet)$age_class)
colData(limb_muscle_droplet)$age_class[ind_young] <- "young"
#filter for mesenchymal stem cell
limb_muscle_msc <- limb_muscle_droplet[,colData(limb_muscle_droplet)$cell_ontology_class == "mesenchymal stem cell"]
# find differentially expressed genes
sc_to_indicator_matrix(sc_obj = limb_muscle_msc,
covarariate = "age_class",
referenceGroup = "young",
saveSummary=F,
FCThreshold = 2,
designFormula = " ~ condition + cngeneson + sex",
pvalueThreshold = 0.05,
nameIndicatorMatrix = "limbMuscleMSC_youngVsOld_ngenes_sex_log2.tsv")
#filter for skeletal muscle satellite cell
limb_muscle_smsc <- adata_temp[,colData(adata_temp)$cell_ontology_class == "skeletal muscle satellite cell"]
# find differentially expressed genes
sc_to_indicator_matrix(sc_obj = limb_muscle_smsc,
covarariate = "age_class",
referenceGroup = "young",
saveSummary=F,
FCThreshold = 2,
designFormula = " ~ condition + cngeneson + sex",
pvalueThreshold = 0.05,
nameIndicatorMatrix = "LimbMuscleSMSC_youngVsOld_ngenes_sex_log2.tsv")
options(java.parameters = "-Xmx64000m")
path_indicator_matrix <- "LimbMuscleMSC_youngVsOld_ngenes_sex_log2.tsv"
ind_matrix <- as.data.frame(data.table::fread(path_indicator_matrix))
##biogrid network of mus musculus which only contains genes which were expressed in the limb muscle
sample_network <- "filtered_biogrid_mm.sif"
kpm_options(
execution = "Local",
strategy = "INES",
algorithm = "Greedy",
use_range_l = TRUE,
l_min = 0,
l_max = 6,
l_step = 1,
use_range_k = TRUE,
k_min = 5,
k_max = 10,
k_step = 1
)
result_msc <- kpm(graph = sample_network, indicator_matrices = ind_matrix)
saveRDS(result_msc, "MSC_INESL0T06_K0To10_woBN.rds")
path_indicator_matrix <- "LimbMuscleSMSC_youngVsOld_ngenes_sex_log2.tsv"
ind_matrix <- as.data.frame(data.table::fread(path_indicator_matrix))
kpm_options(
execution = "Local",
strategy = "INES",
algorithm = "Greedy",
use_range_l = TRUE,
l_min = 1,
l_max = 6,
l_step = 1,
use_range_k = TRUE,
k_min = 5,
k_max = 10,
k_step = 1
)
result_smsc <- kpm(graph = sample_network, indicator_matrices = ind_matrix)
saveRDS(result_smsc, "SMSC_INESL1T06_K0To10_woBN.rds")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.