# smlapsvm = function(x = NULL, y, ux = NULL, valid_x = NULL, valid_y = NULL, nfolds = 5,
# lambda_seq = 2^{seq(-10, 10, length.out = 100)}, lambda_I_seq = 2^{seq(-20, 15, length.out = 20)},
# lambda_theta_seq = 2^{seq(-10, 10, length.out = 100)},
# adjacency_k = 6, normalized = FALSE, weightType = "Binary",
# kernel = c("linear", "gaussian", "poly", "spline", "anova_gaussian"), kparam = c(1),
# scale = TRUE, criterion = c("0-1", "loss"), isCombined = TRUE, nCores = 1, ...)
# {
# out = list()
# cat("Fit c-step \n")
# cstep_fit = cstep.smlapsvm(x = x, y = y, ux = ux, valid_x = valid_x, valid_y = valid_y, nfolds = nfolds,
# lambda_seq = lambda_seq, lambda_I_seq = lambda_I_seq, theta = NULL,
# adjacency_k = adjacency_k, normalized = normalized, weightType = weightType,
# kernel = kernel, kparam = kparam, scale = scale, criterion = criterion, optModel = FALSE, nCores = nCores, ...)
#
# cat("Fit theta-step \n")
# thetastep_fit = thetastep.smlapsvm(cstep_fit, lambda_theta_seq = lambda_theta_seq, isCombined = isCombined, nCores = nCores, ...)
#
# cat("Fit c-step \n")
# opt_cstep_fit = cstep.smlapsvm(x = x, y = y, ux = ux, valid_x = valid_x, valid_y = valid_y, nfolds = nfolds,
# lambda_seq = lambda_seq, lambda_I_seq = lambda_I_seq, theta = thetastep_fit$opt_theta,
# adjacency_k = adjacency_k, normalized = normalized, weightType = weightType,
# kernel = kernel, kparam = kparam, scale = scale, criterion = criterion, optModel = TRUE, nCores = nCores, ...)
#
# out$opt_param = opt_cstep_fit$opt_param
# out$opt_valid_err = opt_cstep_fit$opt_valid_err
# out$cstep_valid_err = opt_cstep_fit$valid_err
# out$theta_valid_err = thetastep_fit$valid_err
# out$opt_model = opt_cstep_fit$opt_model
# out$kernel = kernel
# out$kparam = opt_cstep_fit$opt_param["kparam"]
# out$opt_theta = thetastep_fit$opt_theta
# out$theta = thetastep_fit$theta
# out$x = x
# out$y = y
# out$ux = ux
# out$n_class = opt_cstep_fit$n_class
# class(out) = "smlapsvm"
# return(out)
# }
#
# predict.smlapsvm = function(object, newx = NULL, newK = NULL)
# {
# model = object$opt_model
# cmat = model$cmat
# c0vec = model$c0vec
# levs = model$levels
#
# # if (object$scale) {
# # newx = (newx - matrix(object$center, nrow = nrow(newx), ncol = ncol(newx), byrow = TRUE)) / matrix(object$scaled, nrow = nrow(newx), ncol = ncol(newx), byrow = TRUE)
# # }
#
# if (is.null(newK)) {
# new_anova_K = make_anovaKernel(newx, rbind(object$x, object$ux), kernel = object$kernel, kparam = object$kparam)
# newK = combine_kernel(new_anova_K, theta = object$opt_theta)
# # newK = kernelMatrix(newx, rbind(object$x, object$ux), kernel = object$kernel, kparam = object$kparam)
# # newK = kernelMatrix(rbfdot(sigma = object$kparam), newx, object$x)
# }
#
# pred_y = (matrix(rep(c0vec, nrow(newK)), ncol = model$n_class, byrow = T) + (newK %*% cmat))
# pred_class = levs[apply(pred_y, 1, which.max)]
#
# if (attr(levs, "type") == "factor") {pred_class = factor(pred_class, levels = levs)}
# if (attr(levs, "type") == "numeric") {pred_class = as.numeric(pred_class)}
# if (attr(levs, "type") == "integer") {pred_class = as.integer(pred_class)}
#
# return(list(class = pred_class, pred_value = pred_y))
# }
cstep.smlapsvm = function(x, y, ux = NULL, valid_x = NULL, valid_y = NULL, nfolds = 5,
lambda_seq = 2^{seq(-10, 10, length.out = 100)}, lambda_I_seq = 2^{seq(-20, 15, length.out = 20)}, theta = NULL,
adjacency_k = 6, normalized = FALSE, weightType = "Binary",
kernel = c("linear", "gaussian", "poly", "spline", "anova_gaussian"), kparam = c(1),
scale = FALSE, criterion = c("0-1", "loss"), optModel = FALSE, nCores = 1, ...)
{
call = match.call()
kernel = match.arg(kernel)
criterion = match.arg(criterion)
out = list()
p = ncol(x)
lambda_seq = as.numeric(lambda_seq)
lambda_I_seq = as.numeric(lambda_I_seq)
kparam = as.numeric(kparam)
if (is.null(theta)) {
theta = rep(1, p)
}
lambda_seq = sort(lambda_seq, decreasing = FALSE)
lambda_I_seq = sort(lambda_I_seq, decreasing = TRUE)
kparam = sort(kparam, decreasing = FALSE)
# Combination of hyper-parameters
params = expand.grid(lambda = lambda_seq, lambda_I = lambda_I_seq)
if (!is.null(valid_x) & !is.null(valid_y)) {
model_list = vector("list", 1)
fold_list = NULL
n_l = NROW(x)
n_u = NROW(ux)
n = n_l + n_u
rx = rbind(x, ux)
center = rep(0, p)
scaled = rep(1, p)
if (scale) {
rx = scale(rx)
center = attr(rx, "scaled:center")
scaled = attr(rx, "scaled:scale")
x = (x - matrix(center, nrow = n_l, ncol = p, byrow = TRUE)) / matrix(scaled, nrow = n_l, ncol = p, byrow = TRUE)
ux = (ux - matrix(center, nrow = n_u, ncol = p, byrow = TRUE)) / matrix(scaled, nrow = n_u, ncol = p, byrow = TRUE)
}
valid_err_mat = matrix(NA, nrow = length(kparam), ncol = nrow(params))
for (i in 1:length(kparam)) {
par = kparam[i]
anova_K = make_anovaKernel(rx, rx, kernel = kernel, kparam = par)
# K = combine_kernel(anova_kernel = anova_K, theta = theta)
# W = adjacency_knn(rx, distance = "euclidean", k = adjacency_k)
# graph = W
graph = make_knn_graph_mat(rx, k = adjacency_k)
L = make_L_mat(rx, kernel = kernel, kparam = par, graph = graph, weightType = weightType, normalized = normalized)
# L = fixit(L, epsilon = 0)
# if (any(theta > 0)) {
# graph = make_knn_graph_mat(rx[, theta > 0, drop = FALSE], k = adjacency_k)
# L = make_L_mat(rx[, theta > 0, drop = FALSE], kernel = kernel, kparam = kparam, graph = graph, weightType = weightType, normalized = normalized)
# } else {
# graph = make_knn_graph_mat(rx, k = adjacency_k)
# L = make_L_mat(rx, kernel = kernel, kparam = kparam, graph = graph, weightType = weightType, normalized = normalized)
# }
valid_anova_K = make_anovaKernel(valid_x, rx, kernel = kernel, kparam = par)
valid_K = combine_kernel(anova_kernel = valid_anova_K, theta = theta)
# Parallel computation on the combination of hyper-parameters
fold_err = mclapply(1:nrow(params),
function(j) {
error = try({
msvm_fit = smlapsvm_compact(anova_K = anova_K, L = L, theta = theta, y = y,
lambda = params$lambda[j], lambda_I = params$lambda_I[j], ...)
})
if (!inherits(error, "try-error")) {
pred_val = predict.mlapsvm_compact(msvm_fit, newK = valid_K)$class
if (criterion == "0-1") {
acc = sum(valid_y == pred_val) / length(valid_y)
err = 1 - acc
} else {
# err = ramsvm_hinge(valid_y, pred_val$inner_prod, k = k, gamma = gamma)
}
} else {
msvm_fit = NULL
err = Inf
}
return(list(error = err, fit_model = msvm_fit))
}, mc.cores = nCores)
valid_err = sapply(fold_err, "[[", "error")
# model_list[[1]] = lapply(fold_err, "[[", "fit_model")
valid_err_mat[i, ] = valid_err
}
opt_ind = which(valid_err_mat == min(valid_err_mat), arr.ind = TRUE)
opt_ind = opt_ind[order(opt_ind[, 1], opt_ind[, 2], decreasing = c(FALSE, TRUE))[1], ]
opt_param = c(lambda = params[opt_ind[2], 1], lambda_I = params[opt_ind[2], 2], kparam = kparam[opt_ind[1]])
opt_valid_err = min(valid_err_mat)
}
out$opt_param = opt_param
out$opt_valid_err = opt_valid_err
out$opt_ind = opt_ind
out$valid_err = valid_err
out$x = x
out$ux = ux
out$y = y
out$L = L
out$theta = theta
out$valid_x = valid_x
out$valid_y = valid_y
# out$adjacency_k = adjacency_k
# out$normalized = normalized
# out$weightType = weightType
# out$anova_K = anova_K
# out$K = K
# out$valid_anova_K = valid_anova_K
# out$valid_K = valid_K
out$kernel = kernel
out$kparam = opt_param["kparam"]
out$scale = scale
out$criterion = criterion
if (optModel) {
anova_K = make_anovaKernel(rx, rx, kernel = kernel, kparam = opt_param["kparam"])
opt_model = smlapsvm_compact(anova_K = anova_K, L = L, theta = theta, y = y, lambda = opt_param["lambda"], lambda_I = opt_param["lambda_I"], ...)
out$opt_model = opt_model
}
out$call = call
class(out) = "smlapsvm"
return(out)
}
thetastep.smlapsvm = function(object, lambda_theta_seq = 2^{seq(-10, 10, length.out = 100)},
isCombined = TRUE, optModel = FALSE, nCores = 1, ...)
{
call = match.call()
out = list()
lambda_theta_seq = sort(as.numeric(lambda_theta_seq), decreasing = FALSE)
lambda = object$opt_param["lambda"]
lambda_I = object$opt_param["lambda_I"]
criterion = object$criterion
kernel = object$kernel
kparam = object$opt_param["kparam"]
n_class = object$n_class
x = object$x
y = object$y
theta = object$theta
ux = object$ux
rx = rbind(x, ux)
# adjacency_k = object$adjacency_k
# normalized = object$normalized
# weightType = object$weightType
valid_x = object$valid_x
valid_y = object$valid_y
L = object$L
# anova_K = object$anova_K
# K = object$K
anova_K = make_anovaKernel(rx, rx, kernel = kernel, kparam = kparam)
valid_anova_K = make_anovaKernel(valid_x, rx, kernel = kernel, kparam = kparam)
if (is.null(object$opt_model)) {
init_model = smlapsvm_compact(anova_K = anova_K, L = L, theta = theta, y = y, lambda = lambda, lambda_I = lambda_I, ...)
} else {
init_model = object$opt_model
}
fold_err = mclapply(1:length(lambda_theta_seq),
function(j) {
error = try({
theta = find_theta.smlapsvm(y = y, anova_kernel = anova_K, L = L, cmat = init_model$cmat, c0vec = init_model$c0vec,
lambda = lambda, lambda_I = lambda_I, lambda_theta = lambda_theta_seq[j], ...)
if (isCombined) {
init_model = smlapsvm_compact(anova_K = anova_K, L = L, theta = theta, y = y, lambda = lambda, lambda_I = lambda_I, ...)
}
})
if (!inherits(error, "try-error")) {
valid_subK = combine_kernel(valid_anova_K, theta)
pred_val = predict.mlapsvm_compact(init_model, newK = valid_subK)$class
if (criterion == "0-1") {
acc = sum(valid_y == pred_val) / length(valid_y)
err = 1 - acc
} else {
# err = ramsvm_hinge(valid_y, pred_val$inner_prod, k = k, gamma = gamma)
}
} else {
err = Inf
theta = rep(0, anova_K$numK)
}
return(list(error = err, theta = theta))
}, mc.cores = nCores)
valid_err = sapply(fold_err, "[[", "error")
theta_seq = sapply(fold_err, "[[", "theta")
opt_ind = max(which(valid_err == min(valid_err)))
opt_lambda_theta = lambda_theta_seq[opt_ind]
opt_theta = theta_seq[, opt_ind]
opt_valid_err = min(valid_err)
out$opt_lambda_theta = opt_lambda_theta
out$opt_ind = opt_ind
out$opt_theta = opt_theta
out$theta_seq = theta_seq
out$opt_valid_err = opt_valid_err
out$valid_err = valid_err
if (optModel) {
# subK = combine_kernel(anova_K, opt_theta)
opt_model = smlapsvm_compact(anova_K = anova_K, L = L, theta = opt_theta, y = y, lambda = lambda, lambda_I = lambda_I, ...)
out$opt_model = opt_model
}
class(out) = "smlapsvm"
return(out)
}
find_theta.smlapsvm = function(y, anova_kernel, L, cmat, c0vec, lambda, lambda_I, lambda_theta = 1,
eig_tol_D = 0, eig_tol_I = .Machine$double.eps, epsilon_D = 1e-8, epsilon_I = 1e-11)
{
if (lambda_theta <= 0) {
theta = rep(1, anova_kernel$numK)
return(theta)
}
anova_kernel_orig = anova_kernel
anova_kernel$K = lapply(anova_kernel$K, function(x) {
diag(x) = diag(x) + max(abs(x)) * epsilon_I
return(x)
})
y_temp = factor(y)
levs = levels(y_temp)
attr(levs, "type") = class(y)
y_int = as.integer(y_temp)
n_class = length(levs)
n = NROW(cmat)
n_l = length(y_int)
n_u = n - n_l
Y = class_code(y_int, k = n_class)
Dmat = numeric(anova_kernel$numK)
dvec = numeric(anova_kernel$numK)
A_mat = NULL
for(j in 1:anova_kernel$numK) {
temp_D = 0
temp_d = 0
temp_A = NULL
for (q in 1:ncol(cmat)) {
cvec = cmat[, q]
KLK_temp = anova_kernel_orig$K[[j]] %*% L %*% anova_kernel_orig$K[[j]]
diag(KLK_temp) = diag(KLK_temp) + max(abs(KLK_temp)) * epsilon_I
temp_D = temp_D + n_l * lambda_I / (2 * n^2) * t(cvec) %*% KLK_temp %*% cvec
temp_d = temp_d + n_l * lambda / 2 * t(cvec) %*% anova_kernel$K[[j]] %*% cvec + n_l * lambda_theta
temp_A = rbind(temp_A, (anova_kernel$K[[j]][1:n_l, ] %*% cvec))
}
Dmat[j] = temp_D
dvec[j] = temp_d
A_mat = cbind(A_mat, temp_A)
}
max_D = max(abs(Dmat))
Dmat = c(Dmat, c(rep(0, n_l * n_class)))
Dmat = diag(Dmat)
diag(Dmat) = diag(Dmat) + max_D * epsilon_D
# Dmat = fixit(Dmat, epsilon = eig_tol_D, is_diag = TRUE)
# Dmat = Dmat / max_D
dvec_temp = matrix(1, nrow = n_l, ncol = n_class)
dvec_temp[cbind(1:n_l, y_int)] = 0
# dvec_temp = as.vector(Y)
# dvec_temp[dvec_temp == 1] = 0
# dvec_temp[dvec_temp < 0] = 1
dvec = c(dvec, as.vector(dvec_temp))
dvec = dvec
# dvec = dvec / max_D
# solve QP
# diag(Dmat) = diag(Dmat) + epsilon_D
A_mat = cbind(-A_mat, diag(1, n_l * n_class))
A_mat = rbind(A_mat, diag(1, ncol(A_mat)))
A_theta = cbind(diag(-1, anova_kernel$numK), matrix(0, anova_kernel$numK, (ncol(A_mat) - anova_kernel$numK)))
A_mat = rbind(A_mat, A_theta)
# print(ncol(A.mat))
bvec = c(rep(c0vec, each = n_l) - as.vector(Y), rep(0, anova_kernel$numK + n_l * n_class), rep(-1, anova_kernel$numK))
# print(A.mat)
# print(bvec)
theta_sol = solve.QP(Dmat, -dvec, t(A_mat), bvec, meq = 0, factorized = FALSE)$solution
theta = theta_sol[1:anova_kernel$numK]
theta[theta < 1e-6] = 0
theta = round(theta, 6)
# theta_sol[theta_sol < 1e-6] = 0
# print(beta)
return(theta)
}
smlapsvm_compact = function(anova_K, L, theta, y, lambda, lambda_I, epsilon = 1e-6,
eig_tol_D = 0, eig_tol_I = .Machine$double.eps, epsilon_D = 1e-8, epsilon_I = 1e-11)
{
# The sample size, the number of classes and dimension of QP problem
out = list()
y_temp = factor(y)
levs = levels(y_temp)
attr(levs, "type") = class(y)
y_int = as.integer(y_temp)
n_class = length(levs)
anova_K_orig = anova_K
anova_K$K = lapply(anova_K$K, function(x) {
diag(x) = diag(x) + max(abs(x)) * epsilon_I
return(x)
})
K = combine_kernel(anova_K, theta = theta)
if (sum(K) == 0) {
diag(K) = 1
}
n = nrow(K)
n_l = length(y_int)
n_u = n - n_l
qp_dim = n_l * n_class
J = cbind(diag(n_l), matrix(0, n_l, n - n_l))
KLK = 0
for (i in 1:anova_K$numK) {
KLK_temp = anova_K_orig$K[[i]] %*% L %*% anova_K_orig$K[[i]]
diag(KLK_temp) = diag(KLK_temp) + max(abs(KLK_temp)) * epsilon_I
KLK = KLK + theta[i]^2 * KLK_temp
}
lambda_K = n_l * lambda * K
lambda_KLK = n_l * lambda_I / n^2 * KLK
K_KLK = lambda_K + lambda_KLK
# K_KLK = (K_KLK + t(K_KLK)) / 2
inv_K_KLK = solve(K_KLK, tol = eig_tol_I)
inv_K_KLK = (inv_K_KLK + t(inv_K_KLK)) / 2
inv_K_KLK = inv_K_KLK %*% K %*% t(J)
Q = J %*% K %*% inv_K_KLK
# Q = fixit(Q, epsilon = eig_tol_D)
# diag(Q) = diag(Q) + epsilon_D
# Q = J %*% Q %*% t(J)
# diag(Q) = diag(Q) + epsilon_D
# Convert y into msvm class code
trans_Y = class_code(y_int, n_class)
# Optimize alpha by solve.QP:
# min (-d^Tb + 1/2 b^TDb)
# subject to A^Tb <= b_0
# Following steps (1) - (6)
# (1) preliminary quantities
Jk = matrix(1, nrow = n_class, ncol = n_class)
Ik = diag(1, n_class)
# Vectorize y matrix
y_vec = as.vector(trans_Y)
# Index for non-trivial alphas
nonzeroIndex = (y_vec != 1)
# inv_LK = solve(diag(n_l * lambda, n) + n_l * lambda_I / n^2 * (L %*% K))
# Q = K %*% inv_LK
# Q = K %*% inv_KL
# Q = Q[1:n_l, 1:n_l]
# (2) Compute D <- H
D = (Ik - Jk / n_class) %x% Q
# Subset the columns and rows for non-trivial alpha's
Reduced_D = D[nonzeroIndex, nonzeroIndex]
Reduced_D = fixit(Reduced_D, epsilon = eig_tol_D)
max_D = max(abs(Reduced_D))
# Reduced_D = Reduced_D / max_D
# diag(Reduced_D) = diag(Reduced_D) + epsilon_D
diag(Reduced_D) = diag(Reduced_D) + max_D * epsilon_D
# Reduced_D = nearPD(Reduced_D, eig.tol = rel_eig_tol)$mat
# diag(Reduced_D) = diag(Reduced_D) + epsilon_D
# (3) Compute d <- g
g = -y_vec
# g = -y_vec / max_D
# Subset the components with non-trivial alpha's
Reduced_g = g[nonzeroIndex]
n_nonzeroIndex = length(Reduced_g)
# (4) Compute A <- R
# Equality constraint matrix
R1 = ((Ik - Jk / n_class) %x% matrix(rep(1, n_l), nrow = 1))
# Eliminate one redundant equality constraint
R1 = matrix(R1[1:(n_class - 1), ], nrow = n_class - 1, ncol = ncol(R1))
# Choose components with non-trivial alpha's
Reduced_R1 = matrix(R1[, nonzeroIndex], nrow = nrow(R1), ncol = n_nonzeroIndex)
# Inequality constraint matrix
R2 = diag(rep(1, n_l * (n_class - 1)))
R2 = rbind(R2, -R2)
# R consists of equality and inequality constraints
R = t(rbind(Reduced_R1, R2))
# (5) compute (b_0, b) = r
# Right hand side of equality constraints
r1 = rep(0, nrow(Reduced_R1))
# Right hand side of inequality constraints
r2 = c(rep(0, nrow(R2) / 2), rep(-1, nrow(R2) / 2))
# r2 = c(rep(0, nrow(R2) / 2), rep(-1 / n_l, nrow(R2) / 2))
# R consists of right hand sides of equality and inequality constraints
r = c(r1, r2)
# (6) Find solution by solve.QP.compact
nonzero = find_nonzero(R)
Amat = nonzero$Amat_compact
Aind = nonzero$Aind
dual = solve.QP.compact(Reduced_D, Reduced_g, Amat, Aind, r, meq = nrow(Reduced_R1))
# dual = solve.QP(Reduced_D, Reduced_g, Amat, r, meq = nrow(Reduced_R1), factorized = TRUE)
# dual_temp = solve.QP(Reduced_D, Reduced_g, R, r, meq = nrow(Reduced_R1))
# Place the dual solution into the non-trivial alpha positions
alpha = rep(0, qp_dim)
alpha[nonzeroIndex] = dual$solution
# Make alpha zero if they are too small
alpha[alpha < 0] = 0
# alpha[alpha > 1] = 1
# Reshape alpha into a n by n_class matrix
alpha = matrix(alpha, nrow = n_l)
# Compute cmat = matrix of estimated coefficients
# cmat = -inv_KLK %*% K %*% t(J) %*% (alpha - matrix(rep(rowMeans(alpha), n_class), ncol = n_class))
cmat = -inv_K_KLK %*% (alpha - matrix(rep(rowMeans(alpha), n_class), ncol = n_class))
# J = cbind(diag(1, n_l), matrix(0, n_l, n - n_l))
# Find b vector
Kcmat = J %*% K %*% cmat
flag = T
# while (flag) {
# logic = ((alpha > epsilon) & (alpha < (1 - epsilon)))
# # logic = ((alpha > epsilon) & (alpha < (1 - epsilon)))
# c0vec = numeric(n_class)
# if (all(colSums(logic) > 0)) {
# # Using alphas between 0 and 1, we get c0vec by KKT conditions
# for (i in 1:n_class) {
# c0vec[i] = mean((trans_Y[, i] - Kcmat[, i])[logic[, i]])
# }
# if (abs(sum(c0vec)) < 0.001) {
# flag = F
# } else {
# epsilon = min(epsilon * 2, 0.5)
# }
# } else {
flag = F
# Otherwise, LP starts to find b vector
# reformulate LP w/o equality constraint and redudancy
# objective function with (b_j)_+,-(b_j)_, j=1,...,(k-1) and \xi_ij
a = c(rep(0, 2 * (n_class - 1)), rep(1, n_l * (n_class - 1)))
# inequality conditions
B1 = diag(-1, n_class - 1) %x% rep(1, n_l)
B2 = matrix(1, n_l, n_class - 1)
A = cbind(B1, -B1)
A = rbind(A, cbind(B2, -B2))
A = A[nonzeroIndex, ] # reduced.A
A = cbind(A, diag(1, n_l * (n_class - 1)))
b = matrix(Kcmat - trans_Y, ncol = 1)
b = b[nonzeroIndex] # reduced.b
# constraint directions
const.dir = matrix(rep(">=", nrow(A)))
bpos = lp("min", objective.in = a, const.mat = A, const.dir = const.dir,
const.rhs = b)$solution[1:(2 * (n_class - 1))]
c0vec = cbind(diag(1, n_class - 1), diag(-1, n_class - 1)) %*% matrix(bpos, ncol = 1)
c0vec = c(c0vec, -sum(c0vec))
# }
# }
# Compute the fitted values
fit = (matrix(rep(c0vec, n_l), ncol = n_class, byrow = T) + Kcmat)
fit_class = levs[apply(fit, 1, which.max)]
if (attr(levs, "type") == "factor") {fit_class = factor(fit_class, levels = levs)}
if (attr(levs, "type") == "numeric") {fit_class = as.numeric(fit_class)}
if (attr(levs, "type") == "integer") {fit_class = as.integer(fit_class)}
# table(y, fit_class)
# Return the output
out$alpha = alpha
out$cmat = cmat
out$c0vec = c0vec
out$fit = fit
out$fit_class = fit_class
out$n_l = n_l
out$n_u = n_u
out$n_class = n_class
out$levels = levs
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.