#' @import iterators
#' @include AllClass.R
{}
#' @include AllGeneric.R
{}
#' Create an instance of class \code{\linkS4class{ROIVolume}}
#'
#' @param space an instance of class \code{BrainSpace}
#' @param coords matrix of voxel coordinates
#' @param data the data values, numeric vector
#' @return an instance of class \code{ROIVolume}
#' @rdname ROIVolume
#' @export
ROIVolume <- function(vspace, coords, data=rep(nrow(coords),1)) {
new("ROIVolume", space=vspace, coords=coords, data=as.vector(data))
}
#' Create an instance of class \code{\linkS4class{ROIVector}}
#'
#' @param vspace an instance of class \code{BrainSpace}
#' @param coords matrix of voxel coordinates
#' @param data the \code{matrix} of data values
#' @return an instance of class \code{ROIVector}
#' @rdname ROIVector
#' @export
ROIVector <- function(vspace, coords, data=rep(nrow(coords),1)) {
new("ROIVector", space=vspace, coords=coords, data=data)
}
#' convert a \code{ROIVector} to a matrix
#'
#' @rdname as.matrix-methods
#' @param x the object
#' @export
setMethod(f="as.matrix", signature=signature(x = "ROIVector"), def=function(x) {
as(x, "matrix")
})
#' convert a \code{ROISufaceVector} to a matrix
#'
#' @rdname as.matrix-methods
#' @param x the object
#' @export
setMethod(f="as.matrix", signature=signature(x = "ROIVector"), def=function(x) {
as(x, "matrix")
})
.makeSquareGrid <- function(bvol, centroid, surround, fixdim=3) {
vspacing <- spacing(bvol)
vdim <- dim(bvol)
centroid <- as.integer(centroid)
dimnums <- seq(1,3)[-fixdim]
coords <- lapply(centroid, function(x) { round(seq(x-surround, x+surround)) })
coords <- lapply(dimnums, function(i) {
x <- coords[[i]]
x[x > 0 & x <= vdim[i]]
})
if (all(sapply(coords, length) == 0)) {
stop(paste("invalid cube for centroid", centroid, " with surround", surround, ": volume is zero"))
}
if (fixdim == 3) {
grid <- as.matrix(expand.grid(x=coords[[1]],y=coords[[2]],z=centroid[3]))
} else if (fixdim == 2) {
grid <- as.matrix(expand.grid(x=coords[[1]],y=centroid[2],z=coords[[2]]))
} else if (fixdim == 1) {
grid <- as.matrix(expand.grid(x=centroid[1],y=coords[[1]],z=coords[[2]]))
}
grid
}
.makeCubicGrid <- function(bvol, centroid, surround) {
vspacing <- spacing(bvol)
vdim <- dim(bvol)
centroid <- as.integer(centroid)
coords <- lapply(centroid, function(x) { round(seq(x-surround, x+surround)) })
coords <- lapply(1:3, function(i) {
x <- coords[[i]]
x[x > 0 & x <= vdim[i]]
})
if (all(sapply(coords, length) == 0)) {
stop(paste("invalid cube for centroid", centroid, " with surround", surround, ": volume is zero"))
}
grid <- as.matrix(expand.grid(x=coords[[1]],y=coords[[2]],z=coords[[3]]))
}
#' Create a square region of interest where the z-dimension is fixed at one voxel coordinate.
#'
#' @param bvol an \code{BrainVolume} or \code{BrainSpace} instance.
#' @param centroid the center of the cube in \emph{voxel} coordinates.
#' @param surround the number of voxels on either side of the central voxel.
#' @param fill optional value(s) to assign to data slot.
#' @param nonzero keep only nonzero elements from \code{bvol}. If \code{bvol} is A \code{BrainSpace} then this argument is ignored.
#' @param fixdim the fixed dimension is the third, or z, dimension.
#' @return an instance of class \code{ROIVolume}.
#' @examples
#' sp1 <- BrainSpace(c(10,10,10), c(1,1,1))
#' square <- RegionSquare(sp1, c(5,5,5), 1)
#' vox <- coords(square)
#' ## a 3 X 3 X 1 grid
#' nrow(vox) == 9
#' @export
RegionSquare <- function(bvol, centroid, surround, fill=NULL, nonzero=FALSE, fixdim=3) {
if (is.matrix(centroid)) {
centroid <- drop(centroid)
}
if (length(centroid) != 3) {
stop("RegionSquare: centroid must have length of 3 (x,y,z coordinates)")
}
if (surround < 0) {
stop("'surround' argument cannot be negative")
}
if (is(bvol, "BrainSpace") && is.null(fill)) {
fill = 1
}
grid <- .makeSquareGrid(bvol,centroid,surround,fixdim=fixdim)
vals <- if (!is.null(fill)) {
rep(fill, nrow(grid))
} else {
as.numeric(bvol[grid])
}
keep <- if (nonzero) {
which(vals != 0)
} else {
seq_along(vals)
}
### add central voxel
ROIVolume(space(bvol), data = vals[keep], coords = grid[keep, ])
}
#' Create A Cuboid Region of Interest
#' @param bvol an \code{BrainVolume} or \code{BrainSpace} instance
#' @param centroid the center of the cube in \emph{voxel} coordinates
#' @param surround the number of voxels on either side of the central voxel. A \code{vector} of length 3.
#' @param fill optional value(s) to assign to data slot.
#' @param nonzero keep only nonzero elements from \code{bvol}. If \code{bvol} is A \code{BrainSpace} then this argument is ignored.
#' @return an instance of class \code{ROIVolume}
#' @rdname RegionCube
#' @examples
#' sp1 <- BrainSpace(c(10,10,10), c(1,1,1))
#' cube <- RegionCube(sp1, c(5,5,5), 3)
#' vox <- coords(cube)
#' cube2 <- RegionCube(sp1, c(5,5,5), 3, fill=5)
#'
#'
#' @export
RegionCube <- function(bvol, centroid, surround, fill=NULL, nonzero=FALSE) {
if (is.matrix(centroid)) {
centroid <- drop(centroid)
}
if (length(centroid) != 3) {
stop("RegionCube: centroid must have length of 3 (x,y,z coordinates)")
}
if (surround < 0) {
stop("'surround' argument cannot be negative")
}
if (is(bvol, "BrainSpace") && is.null(fill)) {
fill = 1
}
grid <- .makeCubicGrid(bvol,centroid,surround)
vals <- if (!is.null(fill)) {
rep(fill, nrow(grid))
} else {
as.numeric(bvol[grid])
}
keep <- if (nonzero) {
which(vals != 0)
} else {
seq_along(vals)
}
### add central voxel
ROIVolume(space(bvol), data = vals[keep], coords = grid[keep, ])
}
#' @importFrom rflann RadiusSearch
.makeSphericalGrid <- function(bvol, centroid, radius) {
vspacing <- spacing(bvol)
if (radius < min(vspacing)) {
stop("'radius' is too small; must be greater than at least one voxel dimension in image")
}
vdim <- dim(bvol)
centroid <- as.integer(centroid)
cube <- as.matrix(expand.grid(
seq(centroid[1] - round(radius/vspacing[1]), centroid[1] + round(radius/vspacing[1])),
seq(centroid[2] - round(radius/vspacing[2]), centroid[2] + round(radius/vspacing[2])),
seq(centroid[3] - round(radius/vspacing[3]), centroid[3] + round(radius/vspacing[3]))))
keep <- cube[,1] > 0 & cube[,1] <= vdim[1] & cube[,2] > 0 & cube[,2] <= vdim[2] & cube[,3] > 0 & cube[,3] <= vdim[3]
cube <- cube[keep,,drop=FALSE]
coords <- t(t(cube) * vspacing)
res <- rflann::RadiusSearch(matrix(centroid * vspacing, ncol=3), coords, radius=radius^2, max_neighbour=nrow(cube), build="kdtree",
cores=0, checks=1)
cube[res$indices[[1]],]
}
# .makeSphericalGrid <- function(bvol, centroid, radius) {
# vspacing <- spacing(bvol)
# vdim <- dim(bvol)
# centroid <- as.integer(centroid)
# mcentroid <- ((centroid-1) * vspacing + vspacing/2)
# cubedim <- ceiling(radius/vspacing)
#
# nsamples <- max(cubedim) * 2 + 1
# vmat <- apply(cbind(cubedim, centroid), 1, function(cdim) {
# round(seq(cdim[2] - cdim[1], cdim[2] + cdim[1], length.out=nsamples))
# })
#
# vlist <- lapply(1:NCOL(vmat), function(i) {
# v <- vmat[,i]
# unique(v[v >= 1 & v <= vdim[i]])
# })
#
#
# if (all(sapply(vlist, length) == 0)) {
# stop(paste("invalid sphere for centroid", paste(centroid, collapse=" "), " with radius",
# radius))
# }
#
#
# grid <- as.matrix(expand.grid(x = vlist[[1]], y = vlist[[2]], z = vlist[[3]]))
#
# dvals <- apply(grid, 1, function(gvals) {
# coord <- (gvals-1) * vspacing + vspacing/2
# sqrt(sum((coord - mcentroid)^2))
# })
#
# grid[which(dvals <= radius),]
#
# }
#' @title Create a Spherical Region of Interest
#'
#' @description Creates a Spherical ROI based on a Centroid.
#' @param bvol an \code{BrainVolume} or \code{BrainSpace} instance
#' @param centroid the center of the sphere in voxel space
#' @param radius the radius in real units (e.g. millimeters) of the spherical ROI
#' @param fill optional value(s) to store as data
#' @param nonzero if \code{TRUE}, keep only nonzero elements from \code{bvol}
#' @return an instance of class \code{ROIVolume}
#' @examples
#' sp1 <- BrainSpace(c(10,10,10), c(1,2,3))
#' cube <- RegionSphere(sp1, c(5,5,5), 3.5)
#' vox <- coords(cube)
#' cds <- coords(cube, real=TRUE)
#' ## fill in ROI with value of 6
#' cube1 <- RegionSphere(sp1, c(5,5,5), 3.5, fill=6)
#' all(cube1@data == 6)
#' @export
RegionSphere <- function (bvol, centroid, radius, fill=NULL, nonzero=FALSE) {
if (is.matrix(centroid)) {
assertthat::assert_that(ncol(centroid == 3) & nrow(centroid) == 1)
centroid <- drop(centroid)
}
assertthat::assert_that(length(centroid) == 3)
if (is.null(fill) && is(bvol, "BrainSpace")) {
fill = 1
}
bspace <- space(bvol)
vspacing <- spacing(bvol)
vdim <- dim(bvol)
centroid <- as.integer(centroid)
grid <- .makeSphericalGrid(bvol, centroid, radius)
vals <- if (!is.null(fill)) {
rep(fill, nrow(grid))
} else {
as.numeric(bvol[grid])
}
if (nonzero) {
keep <- vals != 0
ROIVolume(bspace, data = vals[keep], coords = grid[keep, ,drop=FALSE])
} else {
ROIVolume(bspace, data = vals, coords = grid)
}
}
.resample <- function(x, ...) x[sample.int(length(x), ...)]
roi_vector_matrix <- function(mat, refspace, indices, coords) {
structure(mat,
refspace=refspace,
indices=indices,
coords=coords,
class=c("roi_vector_matrix", "matrix"))
}
roi_surface_matrix <- function(mat, refspace, indices, coords) {
structure(mat,
refspace=refspace,
indices=indices,
coords=coords,
class=c("roi_surface_matrix", "matrix"))
}
#' @name as
#' @rdname as-methods
setAs(from="ROIVector", to="matrix", function(from) {
ind <- indices(from)
roi_vector_matrix(from@data, refspace=from@space, indices=ind, coords=indexToCoord(dropDim(from@space), as.numeric(ind)))
})
#' @name as
#' @rdname as-methods
setAs(from="ROIVolume", to="DenseBrainVolume", function(from) {
dat <- array(0, dim(from@space))
dat[coords(from)] <- from@data
ovol <- DenseBrainVolume(dat, from@space, from@source)
})
#' @rdname values-methods
#' @export
setMethod("values", signature(x="ROIVolume"),
function(x, ...) {
x@data
})
#' @rdname values-methods
#' @export
setMethod("values", signature(x="ROIVector"),
function(x, ...) {
x@data
})
#' @rdname indices-methods
#' @export
setMethod("indices", signature(x="ROIVolume"),
function(x) {
gridToIndex(x@space, x@coords)
})
#' @rdname indices-methods
#' @export
setMethod("indices", signature(x="ROIVector"),
function(x) {
gridToIndex(x@space, x@coords)
})
#' @export
#' @param real if \code{TRUE}, return coordinates in real world units
#' @rdname coords-methods
setMethod(f="coords", signature=signature(x="ROIVolume"),
function(x, real=FALSE) {
if (real) {
input <- t(cbind(x@coords-.5, rep(1, nrow(x@coords))))
ret <- t(trans(x) %*% input)
ret[,1:3,drop=FALSE]
} else {
x@coords
}
})
#' @export
#' @rdname length-methods
setMethod(f="length", signature=signature(x="ROIVolume"),
function(x) {
nrow(x@coords)
})
#' subset an \code{ROIVolume}
#' @export
#' @param x the object
#' @param i first index
#' @param j second index
#' @param drop drop dimension
#' @rdname vol_subset-methods
#' @aliases [,ROIVolume,numeric,missing,ANY-method
setMethod("[", signature=signature(x = "ROIVolume", i = "numeric", j = "missing", drop = "ANY"),
function (x, i, j, drop) {
ROIVolume(x@space, x@coords[i,,drop=FALSE], x@data[i])
})
#' @rdname vol_subset-methods
#' @aliases [,ROIVolume,logical,missing,ANY-method
setMethod("[", signature=signature(x="ROIVolume", i="logical", j="missing", drop="ANY"),
function(x,i,j,drop) {
ROIVolume(x@space, x@coords[i,,drop=FALSE], x@data[i])
})
#' show an \code{\linkS4class{ROIVolume}}
#' @param object the object
#' @export
setMethod("show", signature=signature(object = "ROIVolume"),
function (object) {
cat("\n\n\tROIVolume", "\n")
cat("\t size: ", length(object), "\n")
cat("\t parent dim:", dim(object), "\n")
cat("\t num data cols:", if (is.matrix(object@data)) ncol(object@data) else 1, "\n" )
cat("\t voxel center of mass: ", colMeans(coords(object)), "\n")
})
.distance <- function(p1, p2) {
diffs = (p1 - p2)
sqrt(sum(diffs*diffs))
}
# GradientKernel <- function(direction=c("x", "y", "z")) {
# direction <- match.arg(direction)
# grid.vec <- lapply(1:3, function(sv) seq(-1, 1))
#
# # compute relative voxel locations (i.e. centered at 0,0,0)
# voxel.ind <- as.matrix(do.call("expand.grid", grid.vec))
#
# # fractional voxel locations so that the location of a voxel coordinate is centered within the voxel
# cvoxel.ind <- t(apply(voxel.ind, 1, function(vals) sign(vals)* ifelse(vals == 0, 0, abs(vals)-.5)))
#
# ## the coordinates of the voxels (i.e. after multiplying by pixel dims)
# coords <- t(apply(cvoxel.ind, 1, function(v) (v * vdim)))
#
# if (direction == "x") {
# gdim <- 1
# odim <- 2:3
# } else if (direction == "y") {
# gdim <- 2
# odim <- c(1,3)
# } else {
# gdim <- 3
# odim <- c(1,2)
# }
#
#
# wts <- apply(coords, 1, function(r) {
# if (r[gdim] == 0) {
# 0
# } else if (r[gdim] < 0 && all(r[odim] == 0)) {
# -2
# } else if (r[gdim] > 0 && all(r[odim] == 0)) {
# 2
# } else if (r[gdim] < 0) {
# -1
# } else {
# 1
# }
# })
#
# new("Kernel", width=c(3,3,3), weights=wts, voxels=voxel.ind, coords=coords)
#
# }
#
#' Create a Kernel object from a function of distance from kernel center
#'
#' @param kerndim the dimensions in voxels of the kernel
#' @param vdim the dimensions of the voxels in real units
#' @param FUN the kernel function taking as its first argument representing the distance from the center of the kernel
#' @param ... additional parameters to the kernel FUN
#' @importFrom stats dnorm
#' @export
Kernel <- function(kerndim, vdim, FUN=dnorm, ...) {
if (length(kerndim) < 2) {
stop("kernel dim length must be greater than 1")
}
#kern <- array(0, kerndim)
## the half-width for each dimensions
hwidth <- sapply(kerndim, function(d) ceiling(d/2 -1))
## note, if a kernel dim is even, this will force it to be odd numbered
grid.vec <- lapply(hwidth, function(sv) seq(-sv, sv))
# compute relative voxel locations (i.e. centered at 0,0,0)
voxel.ind <- as.matrix(do.call("expand.grid", grid.vec))
# fractional voxel locations so that the location of a voxel coordinate is centered within the voxel
cvoxel.ind <- t(apply(voxel.ind, 1, function(vals) sign(vals)* ifelse(vals == 0, 0, abs(vals)-.5)))
## the coordinates ofthe voxels (i.e. after multiplying by pixel dims)
coords <- t(apply(cvoxel.ind, 1, function(v) (v * vdim)))
## distance of coordinate from kernel center
coord.dist <- apply(coords, 1, .distance, c(0,0,0))
wts <- FUN(coord.dist, ...)
wts <- wts/sum(wts)
kern.weights <- wts
new("Kernel", width=kerndim, weights=kern.weights, voxels=voxel.ind, coords=coords)
}
#' @param centerVoxel the absolute location of the center of the voxel, default is (0,0,0)
#' @rdname voxels-methods
#' @export
setMethod(f="voxels", signature=signature(x="Kernel"),
function(x, centerVoxel=NULL) {
if (is.null(centerVoxel)) {
x@voxels
} else {
sweep(x@voxels, 2, centerVoxel, "+")
}
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.