the_plan <- drake_plan(
## NOTE: Simulations are done in a separate project using
## high performance computing.
# parameters ----
scale_by = 100,
decimals = c(2,2,1),
null_string = '---',
nobs_lvls = c('100', '500', '1000', '5000', null_string),
nobs_lbls = c('100', '500', '1,000', '5,000', null_string),
# data management ----
sim_data = make_sim_data(),
sim_cmp_time = make_sim_cmp_time(),
sim_cmp_time_smry = make_sim_cmp_time_smry(sim_cmp_time, null_string),
sim_cmp_time_inline = make_sim_cmp_time_inline(sim_cmp_time),
sim_desc = make_sim_desc(sim_cmp_time, sim_data),
sim_r2 = make_sim_r2(sim_data),
ames_data = make_ames_data(),
ames_desc = make_ames_desc(ames_data, decimals = decimals + 2),
# table captions ----
caption_tbl_true_r2 = paste(
'True external $R^2$ mean (standard deviation) values for the modeling',
'technique that is internally assessed using \\cvi\\space and \\icv.',
'Descriptions of scenarios 1, 2, and 3 are provided in Section',
'\\ref{subsec:data_gen}'
),
caption_tbl_diffs_r2 = paste(
'Mean (standard deviation) absolute differences in estimates of',
'external $R^2$ between \\cvi\\space and \\icv.',
'Descriptions of scenarios 1, 2, and 3 are provided in Section',
'\\ref{subsec:data_gen}'
),
caption_tbl_rbs_r2 = paste(
"Bias of external $R^2$ estimates using \\cvi\\space and \\icv.",
'Descriptions of scenarios 1, 2, and 3 are provided in Section',
'\\ref{subsec:data_gen}'
),
caption_tbl_std_r2 = paste(
"Standard deviation of external $R^2$",
"estimates using \\cvi\\space and \\icv.",
'Descriptions of scenarios 1, 2, and 3 are provided in Section',
'\\ref{subsec:data_gen}'
),
caption_tbl_rmse_r2 = paste(
"Root-mean-squared error of external $R^2$",
"estimates using \\cvi\\space and \\icv.",
'Descriptions of scenarios 1, 2, and 3 are provided in Section',
'\\ref{subsec:data_gen}'
),
caption_tbl_tune_r2 = paste(
"Mean external $R^2$ when \\cvi\\space and \\icv\\space",
"were applied to tune the number of neighbors used for imputation.",
'Descriptions of scenarios 1, 2, and 3 are provided in Section',
'\\ref{subsec:data_gen}'
),
# table creation ----
tbl_true_r2 = make_tbl_1header(sim_r2,
col_mean = 'external_mn',
col_sd = 'external_sd',
caption = caption_tbl_true_r2,
label = 'ext_rsq',
decimals = decimals,
scale_by = scale_by,
nobs_lvls = nobs_lvls,
nobs_lbls = nobs_lbls),
tbl_diffs_r2 = make_tbl_1header(sim_r2,
col_mean = 'abs_diff_mn',
col_sd = 'abs_diff_sd',
caption = caption_tbl_diffs_r2,
label = 'cv_diffs',
decimals = decimals,
scale_by = scale_by,
nobs_lvls = nobs_lvls,
nobs_lbls = nobs_lbls),
tbl_rbs_r2 = make_tbl_2header(sim_r2$values_all,
type = 'rbs',
caption = caption_tbl_rbs_r2,
label = 'bias',
decimals = decimals,
scale_by = scale_by,
nobs_lvls = nobs_lvls,
nobs_lbls = nobs_lbls),
tbl_std_r2 = make_tbl_2header(sim_r2$values_all,
type = 'std',
caption = caption_tbl_std_r2,
label = 'variance',
decimals = decimals,
scale_by = scale_by,
nobs_lvls = nobs_lvls,
nobs_lbls = nobs_lbls),
tbl_rmse_r2 = make_tbl_2header(sim_r2$values_all,
type = 'rmse',
caption = caption_tbl_rmse_r2,
label = 'rmse',
decimals = decimals,
scale_by = scale_by,
nobs_lvls = nobs_lvls,
nobs_lbls = nobs_lbls),
tbl_tune_r2 = make_tbl_2header(sim_r2$values_tuned,
type = 'r2',
caption = caption_tbl_tune_r2,
label = 'tune',
decimals = decimals,
scale_by = scale_by,
nobs_lvls = nobs_lvls,
nobs_lbls = nobs_lbls),
# figure creation ----
fig_trends_by_nbrs = make_fig_trends_by_nbrs(sim_data),
fig_ames_cmp_time = make_fig_ames_cmp_time(ames_data),
# inline results ----
r2_ext_range = make_external_r2_range(sim_r2$values_all, decimals),
r2_ext_diff23 = make_external_r2_diff(sim_r2$values_all, s2-s3, decimals),
sim_overall_r2_values = sim_r2$values_all %>%
filter(ncov == 'Overall') %>%
separate(key, into = c('scenario', 'miss_mech')),
sim_overall_r2_tune = sim_r2$values_tuned %>%
filter(ncov == 'Overall') %>%
separate(key, into = c('scenario', 'miss_mech')) %>%
mutate(diff = abs(imp_cv_r2 - cv_imp_r2)),
r2_tune_head2head = as.list(summarize(
.data = sim_r2$values_tuned,
cvi_wins = sum(cv_imp_r2 > imp_cv_r2),
total_comparisons = n(),
cvi_wins_pct = tbl_string("{100*mean(cv_imp_r2 > imp_cv_r2)}%")
)),
r2_tune_minmax = make_r2_tune_minmax(sim_overall_r2_tune),
# report compilation ----
sim_article = target(
command = {
rmarkdown::render(knitr_in("doc/SIM_Article.Rmd"))
file_out("doc/SIM_Article.pdf")
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.