#' @title helper_phf_pbp_normalize_columns
#' @description First in processing pipeline to give normalized columns
#'
#' @param df play-by-play data frame
#' @return A data-frame with the following columns:
#' * play_type
#' * team
#' * time
#' * play_description
#' * scoring_team_abbrev
#' * scoring_team_on_ice
#' * defending_team_abbrev
#' * defending_team_on_ice
#' @importFrom dplyr mutate mutate_at bind_cols lead filter select
#' @importFrom stringr str_detect
#' @noRd
helper_phf_pbp_normalize_columns <- function(df){
if (ncol(df) == 3) {
colnames(df) <- c("play_type","team","play_description")
df$time <- NA_character_
df <- df %>%
dplyr::select("play_type", "team", "time", "play_description")
}
if (ncol(df) == 10) {
colnames(df) <- c("play_type", "team", "time","play_description","drop1","drop2",
"scoring_team_abbrev","scoring_team_on_ice","defending_team_abbrev","defending_team_on_ice")
df2 <- df[,7:10]
df2 <- df2 %>%
dplyr::mutate_at(1:4, function(x){dplyr::lead(x,n=2)})
df <- dplyr::bind_cols(df[,1:4], df2)
df <- df %>%
dplyr::filter(!is.na(.data$play_description),!stringr::str_detect(.data$team,"On Ice")) %>%
dplyr::mutate(play_description = gsub("{{.*", "", .data$play_description, perl = TRUE))
} else {
colnames(df) <- c("play_type", "team", "time","play_description")
df$scoring_team_abbrev <- NA_character_
df$scoring_team_on_ice <- NA_character_
df$defending_team_abbrev <- NA_character_
df$defending_team_on_ice <- NA_character_
df <- df %>%
dplyr::filter(!is.na(.data$play_description),!stringr::str_detect(.data$team,"On Ice")) %>%
dplyr::mutate(play_description = gsub("{{.*", "", .data$play_description, perl = TRUE))
}
df <- df %>%
dplyr::select("play_type", "team", "time", "play_description",
"scoring_team_abbrev","scoring_team_on_ice",
"defending_team_abbrev", "defending_team_on_ice")
return(df)
}
#' @title phf_pbp_data
#' @description phf_pbp_data: returns all of the play-by-play data for a game into on big data frame using the process_phf_period/shootout functions. Contains functionality to account for regulation games, overtime games, and shootouts
#'
#' @param data the raw list data that is generated from the phf_game_raw function
#' @importFrom dplyr mutate bind_rows filter row_number select case_when pull starts_with ends_with
#' @importFrom tidyr pivot_wider separate fill replace_na
#' @importFrom stringr str_replace str_replace_all str_extract str_extract_all str_detect str_trim
#' @importFrom utils read.csv
#' @import rvest
#' @noRd
helper_phf_pbp_data <- function(data) {
away <- "[:digit:] GvA|[:digit:] TkA|[:digit:] Blk"
fill <- "from| by|against|to| and|giveaway|Game|Behind|of |Served|served|Bench|bench"
goalie <- "Starting goalie|Pulled goalie|Returned goalie"
fo <- "faceoff won"
ice <- "Even Strength|Empty Net|Power Play|Extra Attacker|Short Handed"
shots <- "Snap shot|Wrist shot|Penalty Shot"
reb <- "blocked|saved|failed attempt"
pen <- "Holding the Stick|Holding|Tripping|Roughing|Hooking|Interference|Diving|Delay|Cross-Checking|Head Contact|Body Checking|Slashing|Check from Behind Misconduct|Checking from Behind|Checking|Ejection|Too Many Men|Delay of Game|Misconduct|Check|High-Sticking|Game Misconduct"
type <- "Minor|Major"
score_string <- "[:digit:] - [:digit:] [A-Z]+|[:digit:] - [:digit:]"
shoot <- "missed attempt against|scores against|Shootout|failed attempt"
lgh <- "[:digit:] mins|[0-9]+ mins"
abbreviations <- "TOR|MIN|BOS|CTW|MET|BUF|MON"
ne <- "On Ice"
pbp <- data %>%
dplyr::mutate(
team = stringr::str_replace(.data$team, abbreviations, ""),
home_goalie = ifelse(.data$play_type == "Goalie" &
.data$team == .data$home_team,
stringr::str_remove(stringr::str_extract(.data$play_description,"\\d+ (.{0,25})"),"\\d+ "),
NA_character_),
away_goalie = ifelse(.data$play_type == "Goalie" &
.data$team == .data$away_team,
stringr::str_remove(stringr::str_extract(.data$play_description,"\\d+ (.{0,25})"),"\\d+ "),
NA_character_),
home_goalie_jersey = ifelse(.data$play_type == "Goalie" &
.data$team == .data$home_team,
stringr::str_extract(.data$play_description,"\\d+"),
NA_character_),
away_goalie_jersey = ifelse(.data$play_type == "Goalie" &
.data$team == .data$away_team,
stringr::str_extract(.data$play_description,"\\d+"),
NA_character_),
goalie_change = ifelse(.data$play_type == "Goalie",
stringr::str_extract(.data$play_description, "Starting|Returned|Pulled"),
NA_character_),
penalty = ifelse(.data$play_type == "Penalty", 1, 0),
penalty_type = ifelse(.data$play_type == "Penalty",
stringr::str_extract(.data$play_description, pen),
NA_character_),
penalty_level = ifelse(.data$play_type == "Penalty",
stringr::str_extract(.data$play_description,type),
NA_character_),
penalty_length = ifelse(.data$play_type == "Penalty",
stringr::str_extract(.data$play_description,"[:digit:] mins"),
NA_character_),
# replacing some basic stuff
on_ice_situation = stringr::str_extract(.data$play_description, ice),
# cleaning the on-ice situation
shot_type = stringr::str_extract(.data$play_description, shots),
shot_result = ifelse(stringr::str_detect(.data$play_type, "Goal") &
.data$play_type != "Goalie", "made",
stringr::str_extract(.data$play_description, reb)),
score = stringr::str_extract(.data$play_description, score_string),) %>%
tidyr::fill("home_goalie") %>%
tidyr::fill("away_goalie") %>%
tidyr::fill("home_goalie_jersey") %>%
tidyr::fill("away_goalie_jersey")
suppressWarnings(pbp <- pbp %>%
tidyr::separate("time", into = c("minute", "second"),
sep = ":", remove = FALSE))
suppressWarnings(
pbp <- pbp %>%
dplyr::mutate(
minute_start = as.numeric(.data$minute),
second_start = as.numeric(.data$second),
minute = ifelse(19 - .data$minute_start == 19 &
60 - .data$second_start == 60, 20,
19 - .data$minute_start),
second = ifelse(60 - .data$second_start == 60, 0,
60 - .data$second_start),
second = ifelse(.data$second < 10, paste0("0", .data$second),
paste0(.data$second)),
clock = paste0(.data$minute, ":", .data$second)) %>%
dplyr::select(-"minute", -"second")
)
suppressWarnings(
pbp <- pbp %>%
# using the comma separators, separate the string into offensive_player one through six
tidyr::separate("scoring_team_on_ice", into = c("offensive_player_name_1", "offensive_player_name_2",
"offensive_player_name_3", "offensive_player_name_4",
"offensive_player_name_5", "offensive_player_name_6"),
sep = " #", remove = FALSE))
suppressWarnings(
pbp <- pbp %>%
# using the comma separators, separate the string into offensive_player one through six
tidyr::separate("defending_team_on_ice", into = c("defensive_player_name_1", "defensive_player_name_2",
"defensive_player_name_3", "defensive_player_name_4",
"defensive_player_name_5", "defensive_player_name_6"),
sep = " #", remove = FALSE))
pbp <- pbp %>%
dplyr::mutate(
offensive_player_jersey_1 = stringr::str_trim(stringr::str_extract(.data$offensive_player_name_1, "\\d+")),
offensive_player_name_1 = stringr::str_trim(stringr::str_replace(.data$offensive_player_name_1, "#\\d+", "")),
offensive_player_jersey_2 = stringr::str_trim(stringr::str_extract(.data$offensive_player_name_2, "\\d+")),
offensive_player_name_2 = stringr::str_trim(stringr::str_replace(.data$offensive_player_name_2, .data$offensive_player_jersey_2, "")),
offensive_player_jersey_3 = stringr::str_trim(stringr::str_extract(.data$offensive_player_name_3, "\\d+")),
offensive_player_name_3 = stringr::str_trim(stringr::str_replace(.data$offensive_player_name_3, .data$offensive_player_jersey_3, "")),
offensive_player_jersey_4 = stringr::str_trim(stringr::str_extract(.data$offensive_player_name_4, "\\d+")),
offensive_player_name_4 = stringr::str_trim(stringr::str_replace(.data$offensive_player_name_4, .data$offensive_player_jersey_4, "")),
offensive_player_jersey_5 = stringr::str_trim(stringr::str_extract(.data$offensive_player_name_5, "\\d+")),
offensive_player_name_5 = stringr::str_trim(stringr::str_replace(.data$offensive_player_name_5, .data$offensive_player_jersey_5, "")),
# there are instances where a team pulls its goalie and has 6 skaters so this is designed to search for that case
offensive_player_jersey_6 = stringr::str_trim(stringr::str_extract(.data$offensive_player_name_6, "\\d+")),
# in the instance where there is NOT a 6th skater, doing a raw str_replace creates a NA and removes the player names
# so this ifelse statement looks to see if there was a 6th player jersey and is so, then replace that jersey with a comma
# otherwise it just pastes the description there without touching it
offensive_player_name_6 = ifelse(! is.na(.data$offensive_player_jersey_6),
stringr::str_trim(stringr::str_replace(.data$offensive_player_name_6, .data$offensive_player_jersey_6, "")), .data$offensive_player_name_6))
pbp <- pbp %>%
dplyr::mutate(
defensive_player_jersey_1 = stringr::str_trim(stringr::str_extract(.data$defensive_player_name_1, "\\d+")),
defensive_player_name_1 = stringr::str_trim(stringr::str_replace(.data$defensive_player_name_1, "#\\d+", "")),
defensive_player_jersey_2 = stringr::str_trim(stringr::str_extract(.data$defensive_player_name_2, "\\d+")),
defensive_player_name_2 = stringr::str_trim(stringr::str_replace(.data$defensive_player_name_2, .data$defensive_player_jersey_2, "")),
defensive_player_jersey_3 = stringr::str_trim(stringr::str_extract(.data$defensive_player_name_3, "\\d+")),
defensive_player_name_3 = stringr::str_trim(stringr::str_replace(.data$defensive_player_name_3, .data$defensive_player_jersey_3, "")),
defensive_player_jersey_4 = stringr::str_trim(stringr::str_extract(.data$defensive_player_name_4, "\\d+")),
defensive_player_name_4 = stringr::str_trim(stringr::str_replace(.data$defensive_player_name_4, .data$defensive_player_jersey_4, "")),
defensive_player_jersey_5 = stringr::str_trim(stringr::str_extract(.data$defensive_player_name_5, "\\d+")),
defensive_player_name_5 = stringr::str_trim(stringr::str_replace(.data$defensive_player_name_5, .data$defensive_player_jersey_5, "")),
# there are instances where a team pulls its goalie and has 6 skaters so this is designed to search for that case
defensive_player_jersey_6 = stringr::str_trim(stringr::str_extract(.data$defensive_player_name_6, "\\d+")),
# in the instance where there is NOT a 6th skater, doing a raw str_replace creates a NA and removes the player names
# so this ifelse statement looks to see if there was a 6th player jersey and is so, then replace that jersey with a comma
# otherwise it just pastes the description there without touching it
defensive_player_name_6 = ifelse(! is.na(.data$defensive_player_jersey_6),
stringr::str_trim(stringr::str_replace(.data$defensive_player_name_6, .data$defensive_player_jersey_6, "")), .data$defensive_player_name_6))
pbp <- pbp %>%
dplyr::mutate(
leader = stringr::str_extract(.data$score, "[A-Z]+"),
scr = stringr::str_replace_all(.data$score, "[A-Z]+", "")) %>%
tidyr::separate(
"scr",
into = c("away_goals", "home_goals"),
sep = " - ",
remove = FALSE) %>%
dplyr::select(-"scr") %>%
tidyr::fill("score") %>%
tidyr::fill("leader") %>%
tidyr::fill("away_goals") %>%
tidyr::fill("home_goals") %>%
dplyr::mutate(
leader = ifelse(is.na(.data$leader), 'T', .data$leader),
away_goals = ifelse(is.na(.data$away_goals), 0, .data$away_goals),
home_goals = ifelse(is.na(.data$home_goals), 0, .data$home_goals),
score = ifelse(is.na(.data$score), '0 - 0 T', .data$score)) %>%
dplyr::mutate(
sec_from_start = (60 * .data$minute_start) + .data$second_start,
# adding time to the seconds_from_start variable to account for what period we're in
sec_from_start = dplyr::case_when(
.data$period_id == 2 ~ .data$sec_from_start + 1200,
.data$period_id == 3 ~ .data$sec_from_start + 2400,
.data$period_id == 4 ~ .data$sec_from_start + 3600,
.data$period_id == 5 ~ .data$sec_from_start + 4800,
TRUE ~ .data$sec_from_start),
# who long, in seconds, will the penalty and power play opportunity extend?
power_play_seconds = ifelse(!is.na(.data$penalty_length),
as.numeric(str_extract(.data$penalty_length, '\\d')) * 60,
NA_real_),
start_power_play = ifelse(.data$penalty == 1, .data$sec_from_start, NA_real_),
end_power_play = ifelse(.data$penalty == 1, .data$start_power_play + .data$power_play_seconds, NA_real_)) %>%
tidyr::fill("start_power_play") %>%
tidyr::fill("end_power_play") %>%
dplyr::mutate(
on_ice_situation = ifelse((.data$sec_from_start >= .data$start_power_play &
.data$sec_from_start <= .data$end_power_play) |
(.data$on_ice_situation == "Power Play"), "Power Play",
.data$on_ice_situation),
on_ice_situation = tidyr::replace_na(.data$on_ice_situation, "Even Strength"),
goalie_involved = dplyr::case_when(
.data$play_type %in% c("Goal", "PP Goal", "Shot", "Shot BLK") &
str_detect(.data$team, .data$home_team) ~ .data$away_goalie,
.data$play_type %in% c("Goal", "PP Goal", "Shot", "Shot BLK") &
str_detect(.data$team, .data$away_team) ~ .data$home_goalie,
TRUE ~ NA_character_),
time_elapsed = .data$time,
time_remaining = .data$clock,
power_play_seconds = ifelse(is.na(.data$power_play_seconds), 0,
.data$power_play_seconds))
pbp <- pbp %>%
# taking the players and numbers involved in a play
dplyr::mutate(
desc2 = stringr::str_replace_all(.data$play_description, away, ""),
desc2 = stringr::str_replace_all(.data$desc2, fill, ""),
desc2 = stringr::str_replace_all(.data$desc2, goalie, ""),
desc2 = stringr::str_replace_all(.data$desc2, fo, ""),
desc2 = stringr::str_replace_all(.data$desc2, ice, ""),
desc2 = stringr::str_replace_all(.data$desc2, shots, ""),
desc2 = stringr::str_replace_all(.data$desc2, reb, ""),
desc2 = stringr::str_replace_all(.data$desc2, pen, ""),
desc2 = stringr::str_replace_all(.data$desc2, type, ""),
desc2 = stringr::str_replace_all(.data$desc2, shoot, ""),
desc2 = stringr::str_replace_all(.data$desc2, score_string, ""),
desc2 = stringr::str_replace_all(.data$desc2, lgh, ""),
player_jersey_1 = stringr::str_extract(.data$desc2, "#[0-9]+"),
desc2 = stringr::str_replace(.data$desc2, .data$player_jersey_1, ""),
# don't replace first number with a comma because there is no name in front of the first number
player_jersey_2 = stringr::str_extract(.data$desc2, "#[0-9]+"),
# since there isn't always a second or third player involved in a play, using an ifelse statement
# to figure out if there was a player, then replacing them if so
desc2 = ifelse(!is.na(.data$player_jersey_2),
stringr::str_replace(.data$desc2, .data$player_jersey_2, ","), .data$desc2),
player_jersey_3 = stringr::str_trim(stringr::str_extract(.data$desc2, "#[0-9]+")),
desc2 = ifelse(!is.na(.data$player_jersey_3),
stringr::str_replace(.data$desc2, .data$player_jersey_3, ","), .data$desc2),
player_jersey_1 = stringr::str_trim(stringr::str_replace_all(.data$player_jersey_1, "#", "")),
player_jersey_2 = stringr::str_trim(stringr::str_replace_all(.data$player_jersey_2, "#", "")),
player_jersey_3 = stringr::str_trim(stringr::str_replace_all(.data$player_jersey_3, "#", "")))
# running the player name separation within suppressWarnings to avoid getting 'NA, expected 3 arguments'
# for plays with just one or two players involved
suppressWarnings(
pbp <- pbp %>%
tidyr::separate(col = "desc2", into = c("player_name_1", "player_name_2", "player_name_3"),
sep = ",", remove = TRUE))
# trim whitespace around player names
pbp <- pbp %>%
dplyr::mutate(
player_name_1 = stringr::str_trim(.data$player_name_1),
player_name_2 = stringr::str_trim(.data$player_name_2),
player_name_3 = stringr::str_trim(.data$player_name_3))
# figuring out how many skaters are on the ice at a single time
away_state_changes <- pbp %>%
dplyr::filter((.data$play_type == "PP Goal" & stringr::str_detect(.data$team, .data$home_team)) |
(.data$play_type == "Penalty" & stringr::str_detect(.data$team, .data$away_team))) %>%
dplyr::select("play_type", "sec_from_start", "power_play_seconds") %>%
dplyr::mutate(play_type = ifelse(.data$play_type == "Penalty", 1, 2),
prev.event = lag(.data$play_type),
prev.time = lag(.data$sec_from_start),
prev.length = lag(.data$power_play_seconds))
away_pen_mat <- apply(away_state_changes,
1,
function(x) {
#Creates a -1 for duration of penalty and 0s surrounding it
if(x[1] == 1 & x[2]+x[3] < (max(pbp$period_id, na.rm = TRUE)*1200-1)){
c( rep( 0, length( 0:x[2] )),
rep( -1, x[3]),
rep(0, length((x[2]+x[3] + 1):(max(pbp$period_id, na.rm = TRUE)*1200-1)))
)
#Creates a -1 for duration of penalty and 0s before (for end of game penalties)
} else if (x[1] == 1 & (x[2] == (max(pbp$period_id, na.rm = TRUE)*1200))) {
c( rep( 0, length( 0:(max(pbp$period_id, na.rm = TRUE)*1200-1) )))
} else if(x[1] == 1 & x[2]+x[3] >= (max(pbp$period_id, na.rm = TRUE)*1200-1)) {
c( rep( 0, length( 0:x[2] )),
rep(-1, max(pbp$period_id, na.rm = TRUE)*1200-1-x[2] )
)
#Creates a +1 from time power play goal is scored to end of penalty to handle skater coming back on
} else if( x[1] == 2 & (x[2] %in% ifelse(!is.na(x[5]) & !is.na(x[6]) & x[2] != x[5], x[5]:(x[5]+x[6]),-1 )) ) {
c( rep( 0, length( 0:(x[2]) )),
rep( 1, length( (x[2]+1):(x[6]-(x[2]-x[5])))),
rep(0, length((x[6]-(x[2]-x[5])):(max(pbp$period_id, na.rm = TRUE)*1200-1)))
)
# Creates all zeros if event doesnt effect strength
} else {
rep(0, length(0:(max(pbp$period_id, na.rm = TRUE)*1200-1)))
}
})
if (typeof(away_pen_mat) == "list") {
away_pen_mat <- matrix(unlist(away_pen_mat), ncol = nrow(away_state_changes), byrow = TRUE)
}
adim <- dim(away_pen_mat)
#creates vector for skaters
if (! is.null(adim)) {
away_skaters <- 5 + apply(away_pen_mat, 1, sum)
away_skaters <- as.data.frame(away_skaters) %>%
tibble::rownames_to_column("sec_from_start")%>%
dplyr::mutate(sec_from_start = as.numeric(.data$sec_from_start))
} else if (is.null(adim)) {
sec <- seq(1, max(pbp$period_id) * 1200)
a_skate <- 5
away_skaters <- data.frame(sec, a_skate)
colnames(away_skaters) <- c("sec_from_start", "away_skaters")
}
home_state_changes <- pbp %>%
dplyr::filter((.data$play_type == "PP Goal" & stringr::str_detect(.data$team, .data$away_team)) |
(.data$play_type == "Penalty" & stringr::str_detect(.data$team, .data$home_team))) %>%
dplyr::select("play_type", "sec_from_start", "power_play_seconds") %>%
dplyr::mutate(
play_type = ifelse(.data$play_type == "Penalty",1,2),
prev.event = lag(.data$play_type),
prev.time = lag(.data$sec_from_start),
prev.length = lag(.data$power_play_seconds))
home_pen_mat <- apply(home_state_changes,
1,
function(x) {
#Creates a -1 for duration of penalty and 0s surrounding it
if(x[1] == 1 & (x[2] + x[3]) < (max(pbp$period_id, na.rm = TRUE) * 1200-1)){
c( rep( 0, length( 0:x[2] )),
rep( -1, x[3]),
rep(0, length((x[2]+x[3] + 1):(max(pbp$period_id, na.rm = TRUE)*1200-1)))
)
#Creates a -1 for duration of penalty and 0s before (for end of game penalties)
} else if (x[1] == 1 & (x[2] == (max(pbp$period_id, na.rm = TRUE)*1200))) {
c( rep( 0, length( 0:(max(pbp$period_id, na.rm = TRUE)*1200-1) )))
} else if(x[1] == 1 & (x[2]+x[3]) >= (max(pbp$period_id, na.rm = TRUE)*1200-1)) {
c( rep( 0, length( 0:x[2] )),
rep(-1, max(pbp$period_id, na.rm = TRUE)*1200-1-x[2] )
)
#Creates a +1 from time power play goal is scored to end of penalty to handle skater coming back on
} else if( x[1] == 2 & (x[2] %in% ifelse(!is.na(x[5]) & !is.na(x[6]) & x[2] != x[5], x[5]:(x[5]+x[6]),-1 )) ) {
c( rep( 0, length( 0:(x[2]) )),
rep( 1, length( (x[2]+1):(x[6]-(x[2]-x[5])))),
rep(0, length((x[6]-(x[2]-x[5])):(max(pbp$period_id, na.rm = TRUE)*1200-1)))
)
# Creates all zeros if event doesn't effect strength
} else {
rep(0, length(0:(max(pbp$period_id)*1200-1)))
}
})
if (typeof(home_pen_mat) == "list") {
home_pen_mat <- matrix(unlist(home_pen_mat), ncol = nrow(home_state_changes), byrow = TRUE)
}
hdim <- dim(home_pen_mat)
#creates vector for skaters
if (! is.null(hdim)) {
home_skaters <- 5 + apply(home_pen_mat, 1, sum)
home_skaters <- as.data.frame(home_skaters) %>%
tibble::rownames_to_column("sec_from_start")%>%
dplyr::mutate(sec_from_start = as.numeric(.data$sec_from_start))
} else if (is.null(hdim)) {
hsec <- seq(1, max(pbp$period_id) * 1200)
h_skate <- 5
home_skaters <- data.frame(hsec, h_skate)
colnames(home_skaters) <- c("sec_from_start", "home_skaters")
}
suppressMessages(pbp <- left_join(pbp, home_skaters))
suppressMessages(pbp <- left_join(pbp, away_skaters))
pbp <- pbp %>%
dplyr::mutate(
player_name_1 = stringr::str_trim(stringr::str_replace(.data$player_name_1,
"missed attempt|scores", "")),
player_name_2 = stringr::str_trim(stringr::str_replace(.data$player_name_2,
"Shootout|Shoout|shoout|shootout", ""))
)
# accounts for pulled goalie
# and deals with more than two penalties at one time for a single team
pbp <- pbp %>%
dplyr::mutate(
home_skaters = ifelse(.data$home_skaters < 3, 3, .data$home_skaters),
away_skaters = ifelse(.data$away_skaters < 3, 3, .data$away_skaters),
home_skaters = ifelse(is.na(.data$home_goalie), .data$home_skaters + 1, .data$home_skaters),
away_skaters = ifelse(is.na(.data$away_goalie), .data$away_skaters + 1, .data$away_skaters),
home_skaters = ifelse(.data$sec_from_start == 0, 5, .data$home_skaters),
away_skaters = ifelse(.data$sec_from_start == 0, 5, .data$away_skaters),
on_ice_situation = ifelse(.data$home_skaters != .data$away_skaters,
"Power Play", "Even Strength")
)
return(pbp)
}
#' @title helper_phf_team_box
#' @description helper_phf_team_box: the code for processing box score data into a format that makes sense
#'
#' @param data the raw data from the game that you're interested in
#' @importFrom dplyr mutate bind_rows filter row_number select case_when pull starts_with ends_with
#' @importFrom tidyr pivot_wider separate fill
#' @importFrom stringr str_replace str_replace_all str_extract str_extract_all str_detect str_trim
#' @importFrom janitor clean_names
#' @import rvest
#' @noRd
helper_phf_team_box <- function(data) {
df <- data[[max(length(data))]]
score <- data[[max(length(data)) - 2]]
shot <- data[[max(length(data)) - 1]]
start_names <- c("team", "period_1_scoring", "total_scoring")
in_prog_names <- c("team","period_1_scoring","period_2_scoring", "total_scoring")
reg_names <- c("team","period_1_scoring","period_2_scoring",
"period_3_scoring", "total_scoring")
ot_only_names <- c("team","period_1_scoring","period_2_scoring",
"period_3_scoring", "overtime_scoring",
"total_scoring")
shootout_scoring_init_names <- c("team","period_1_scoring","period_2_scoring",
"period_3_scoring", "overtime_scoring",
"shootout_made_scoring", "total_scoring", "shootout_missed_scoring")
shootout_names <- c("team","period_1_scoring","period_2_scoring",
"period_3_scoring", "overtime_scoring",
"shootout_made_scoring", "shootout_missed_scoring", "total_scoring")
shootout_shot_init_names <- c("team","period_1_shots","period_2_shots",
"period_3_shots", "overtime_shots", "total_shots",
"shootout_made_shots","shootout_missed_shots")
shootout_shot_names <- c("team","period_1_shots","period_2_shots",
"period_3_shots", "overtime_shots",
"shootout_made_shots","shootout_missed_shots", "total_shots")
if(ncol(score) == 3) {
colnames(score) <- start_names
score$period_2_scoring <- NA_integer_
score$period_3_scoring <- NA_integer_
score$overtime_scoring <- NA_integer_
score$shootout_made_scoring <- NA_integer_
score$shootout_missed_scoring <- NA_integer_
score <- score %>%
dplyr::select(dplyr::all_of(shootout_names))
shot$period_2_scoring <- NA_integer_
shot$period_3_scoring <- NA_integer_
shot$overtime_scoring <- NA_integer_
shot$shootout_made_scoring <- NA_integer_
shot$shootout_missed_scoring <- NA_integer_
colnames(shot) <- gsub("_scoring", "_shots", colnames(score))
shot <- shot %>%
dplyr::select(dplyr::all_of(shootout_shot_names))
} else if (ncol(score) == 4) {
colnames(score) <- in_prog_names
score$period_3_scoring <- NA_integer_
score$overtime_scoring <- NA_integer_
score$shootout_made_scoring <- NA_integer_
score$shootout_missed_scoring <- NA_integer_
score <- score %>%
dplyr::select(dplyr::all_of(shootout_names))
shot$period_3_scoring <- NA_integer_
shot$overtime_scoring <- NA_integer_
shot$shootout_made_scoring <- NA_integer_
shot$shootout_missed_scoring <- NA_integer_
colnames(shot) <- gsub("_scoring", "_shots", colnames(score))
shot <- shot %>%
dplyr::select(dplyr::all_of(shootout_shot_names))
} else if (ncol(score) == 5) {
colnames(score) <- reg_names
score$overtime_scoring <- NA_integer_
score$shootout_made_scoring <- NA_integer_
score$shootout_missed_scoring <- NA_integer_
score <- score %>%
dplyr::select(dplyr::all_of(shootout_names))
colnames(shot) <- gsub("_scoring", "_shots",reg_names)
shot$overtime_shots <- NA_integer_
shot$shootout_made_shots <- NA_integer_
shot$shootout_missed_shots <- NA_integer_
shot <- shot %>%
dplyr::select(dplyr::all_of(shootout_shot_names))
} else if (ncol(score) == 6) {
colnames(score) <- ot_only_names
score$shootout_made_scoring <- NA_integer_
score$shootout_missed_scoring <- NA_integer_
score <- score %>%
dplyr::select(dplyr::all_of(shootout_names))
colnames(shot) <- gsub("_scoring", "_shots", ot_only_names)
shot$shootout_made_shots <- NA_integer_
shot$shootout_missed_shots <- NA_integer_
colnames(shot) <- shootout_shot_init_names
shot <- shot %>%
dplyr::select(dplyr::all_of(shootout_shot_names))
colnames(shot) <- gsub("_scoring", "_shots", colnames(score))
shot <- shot %>%
dplyr::select(dplyr::all_of(shootout_shot_names))
} else if (ncol(score) == 7) {
score$shootout_missed_scoring <- NA_integer_
colnames(score) <- shootout_scoring_init_names
score <- score %>%
dplyr::select(dplyr::all_of(shootout_names))
shot$shootout_made_scoring <- NA_integer_
shot$shootout_missed_scoring <- NA_integer_
colnames(shot) <- shootout_shot_init_names
shot <- shot %>%
dplyr::select(dplyr::all_of(shootout_shot_names))
score <- score %>%
dplyr::mutate(
shootout_made_scoring = stringr::str_replace(.data$shootout_made_scoring, "[0-9] ", ""),
shootout_made_scoring = stringr::str_replace(.data$shootout_made_scoring, "\\(", ""),
shootout_made_scoring = stringr::str_replace(.data$shootout_made_scoring, "\\)", ""),
shootout_rep = stringr::str_replace(.data$shootout_made_scoring, " - ", ",")) %>%
dplyr::select(-c("shootout_made_scoring")) %>%
tidyr::separate("shootout_rep", into = c("shootout_made_scoring", "shootout_missed_scoring"),
sep = ",", remove = TRUE) %>%
dplyr::mutate(shootout_missed_scoring = as.numeric(.data$shootout_missed_scoring))
}
df <- df %>%
janitor::clean_names() %>%
tidyr::pivot_longer(cols = 2:3) %>%
tidyr::pivot_wider(names_from = "team_stats") %>%
janitor::clean_names() %>%
tidyr::separate(
"power_plays",
into = c("successful_power_play", "power_play_opportunities"),
sep = " / ") %>%
dplyr::mutate_at(
vars(.data$successful_power_play,
.data$power_play_opportunities,
.data$power_play_percent,
.data$penalty_minutes,
.data$faceoff_percent,
.data$blocked_opponent_shots,
.data$takeaways,
.data$giveaways), as.numeric) %>%
dplyr::rename("team" = "name")
s <- shot %>%
dplyr::left_join(score, by = c("team")) %>%
dplyr::mutate(
team = tolower(.data$team),
shootout_made_scoring = as.numeric(.data$shootout_made_scoring))
df <- df %>%
dplyr::left_join(s, by = c("team"))
df <- df %>%
dplyr::mutate(
winner = ifelse(.data$total_scoring == max(.data$total_scoring, na.rm = TRUE), TRUE, FALSE))
return(df)
}
#' @title phf_get_season_id
#' @description phf_get_season_id: returns the PHF season ID for a given year
#'
#' @param season the season
#' @importFrom dplyr case_when
#' @noRd
phf_get_season_id <- function(season) {
season_id <- dplyr::case_when(
season == 2023 ~ 4667,
season == 2022 ~ 3372,
season == 2021 ~ 2779,
season == 2020 ~ 1950,
season == 2019 ~ 2047,
season == 2018 ~ 2046,
season == 2017 ~ 2045,
season == 2016 ~ 246,
TRUE ~ NA_real_
)
return(season_id)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.