#' R Multi-Objective Optimization Main Function
#'
#' Main function of rmoo, based on the parameters it will call the different
#' algorithms implemented in the package. Optimization algorithms will minimize
#' a fitness function. For more details of the algorithms
#' see [nsga2()], [nsga3()], [rnsga2()].
#'
#' Multi- and Many-Optimization of a fitness function using Non-dominated
#' Sorting Genetic Algorithms. The algorithms currently implemented by rmoo
#' are: NSGA-II, NSGA-III and R-NSGA-II
#'
#' The Non-dominated genetic algorithms II (NSGA-II) is a meta-heuristic proposed by
#' K. Deb, A. Pratap, S. Agarwal and T. Meyarivan in 2002. The purpose of the
#' algorithms is to find an efficient way to optimize multi-objectives functions
#' (two or more).
#'
#' The Non-dominated genetic algorithms III (NSGA-III) is a meta-heuristic proposed by
#' K. Deb and H. Jain in 2013.
#' The purpose of the algorithms is to find an efficient way to optimize
#' multi-objectives functions (more than three).
#'
#' The Reference point-based Non-dominated genetic algorithms II (R-NSGA-II) is
#' a meta-heuristic proposed by K. Deb and J. Sundar in 2006. It is a modification
#' of NSGA-II based on reference points in which the decision-maker supplies one
#' or more preference points and a weight vector that will guide the solutions
#' towards regions desired by the user.
#'
#' @name rmoo_main
#'
#' @param type the type of genetic algorithm to be run depending on the nature
#' of decision variables. Possible values are:
#' \describe{
#' \item{'binary'}{for binary representations of decision variables.}
#' \item{'real-valued'}{for optimization problems where the decision
#' variables are floating-point representations of real numbers.}
#' \item{'permutation'}{for problems that involves reordering of a list of
#' objects.}
#' \item{'discrete'}{for discrete representations of decision variables.}
#' }
#'
#' @param algorithm the type of genetic algorithm to be run depending on the nature
#' of decision variables. Possible values are:
#' \describe{
#' \item{'NSGA-II'}{for .}
#' \item{'NSGA-III'}{for .}
#' \item{'R-NSGA-II'}{for .}
#' }
#'
#' @param fitness the fitness function, any allowable R function which takes as
#' input an individual string representing a potential solution, and returns a
#' numerical value describing its 'fitness'.
#' @param ... argument in which all the values necessary for the configuration
#' will be passed as parameters. The user is encouraged to see the documentations.
#' @param lower a vector of length equal to the decision variables providing the
#' lower bounds of the search space in case of real-valued or permutation
#' encoded optimizations.
#' @param upper a vector of length equal to the decision variables providing the
#' upper bounds of the search space in case of real-valued or permutation
#' encoded optimizations.
#' @param nBits a value specifying the number of bits to be used in binary
#' encoded optimizations.
#' @param nvars a value .
#' @param population an R function for randomly generating an initial population.
#' See [rmoo_Population()] for available functions.
#' @param selection an R function performing selection, i.e. a function which
#' generates a new population of individuals from the current population
#' probabilistically according to individual fitness. See [rmoo_Selection()]
#' for available functions.
#' @param crossover an R function performing crossover, i.e. a function which
#' forms offsprings by combining part of the genetic information from their
#' parents. See [rmoo_Crossover()] for available functions.
#' @param mutation an R function performing mutation, i.e. a function which
#' randomly alters the values of some genes in a parent chromosome.
#' See [rmoo_Mutation()] for available functions.
#' @param pcrossover the probability of crossover between pairs of chromosomes.
#' Typically this is a large value and by default is set to 0.8.
#' @param pmutation the probability of mutation in a parent chromosome. Usually
#' mutation occurs with a small probability, and by default is set to 0.1.
#' @param popSize the population size.
#' @param maxiter the maximum number of iterations to run before the NSGA search
#' is halted.
#' @param nObj number of objective in the fitness function.
#' @param names a vector of character strings providing the names of decision
#' variables.
#' @param suggestions a matrix of solutions strings to be included in the
#' initial population. If provided the number of columns must match the number
#' of decision variables.
#' @param monitor a logical or an R function which takes as input the current
#' state of the nsga-class object and show the evolution of the search. By
#' default, for interactive sessions the function rmooMonitor prints the average
#' and best fitness values at each iteration. If set to plot these information
#' are plotted on a graphical device. Other functions can be written by the user
#' and supplied as argument. In non interactive sessions, by default
#' monitor = FALSE so any output is suppressed.
#' @param parallel An optional argument which allows to specify if the NSGA-II
#' should be run sequentially or in parallel.
#' @param summary If there will be a summary generation after generation.
#' @param seed an integer value containing the random number generator state.
#' This argument can be used to replicate the results of a NSGA search. Note
#' that if parallel computing is required, the doRNG package must be installed.
#' @param reference_dirs Function to generate reference points using Das and
#' Dennis approach or matrix with supplied reference points.
#' @param epsilon controls the extent of obtained solutions by grouping all
#' solutions that have a normalized difference sum in objective values of epsilon or less.
#' @param normalization of the ideal points and nadir. They can be:
#' \describe{
#' \item{'ever'}{.}
#' \item{'front'}{.}
#' \item{'no'}{.}
#' }
#'
#' @param extreme_points_as_ref_dirs flag to use extreme points as reference points.
#' @param weights vector specifies the importance of one objective function over
#' the other, by default all objectives have equal weights.
#' of [nsga2()], [rnsga2()], [nsga3()] in which the necessary parameters for each
#' algorithm are cited, in addition, the chosen strategy to execute must be
#' passed as an argument. This can be seen more clearly in the examples.
#'
#' @author Francisco Benitez
#' \email{benitezfj94@gmail.com}
#'
#' @references Scrucca, L. (2017) On some extensions to 'GA' package: hybrid
#' optimisation, parallelisation and islands evolution. The R Journal, 9/1, 187-206.
#' doi: 10.32614/RJ-2017-008
#'
#' Kalyanmoy Deb and J. Sundar. 2006. Reference point based multi-objective
#' optimization using evolutionary algorithms. In Proceedings of the 8th annual
#' conference on Genetic and evolutionary computation (GECCO '06). Association
#' for Computing Machinery, New York, NY, USA, 635–642. doi: 10.1145/1143997.1144112
#'
#' K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, 'A fast and
#' elitist multiobjective genetic algorithm: NSGA-II,' in IEEE Transactions on
#' Evolutionary Computation, vol. 6, no. 2, pp. 182-197, April 2002,
#' doi: 10.1109/4235.996017.
#'
#' K. Deb and H. Jain, "An Evolutionary Many-Objective Optimization
#' Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I:
#' Solving Problems With Box Constraints," in IEEE Transactions on Evolutionary
#' Computation, vol. 18, no. 4, pp. 577-601, Aug. 2014,
#' doi: 10.1109/TEVC.2013.2281535.
#'
#' @seealso [nsga2()], [rnsga2()], [nsga3()]
#'
#' @return Returns an object of class nsga2-class, rnsga2-class or nsga3-class.
#' See [nsga2-class], [rnsga2-class], [nsga3-class] for a description of
#' available slots information.
#'
#' @examples
#' #Example 1
#' #Two Objectives - Real Valued
#' zdt1 <- function (x) {
#' if (is.null(dim(x))) {
#' x <- matrix(x, nrow = 1)
#' }
#' n <- ncol(x)
#' g <- 1 + rowSums(x[, 2:n, drop = FALSE]) * 9/(n - 1)
#' return(cbind(x[, 1], g * (1 - sqrt(x[, 1]/g))))
#' }
#'
#' #Not run:
#' \dontrun{
#' result <- rmoo(type = "real-valued",
#' fitness = zdt1,
#' algorithm = "NSGA-II",
#' lower = c(0,0),
#' upper = c(1,1),
#' popSize = 100,
#' nObj = 2,
#' monitor = FALSE,
#' maxiter = 500)
#'
#' }
#'
#' #Example 2
#' #Three Objectives - Real Valued
#' dtlz1 <- function (x, nobj = 3){
#' if (is.null(dim(x))) {
#' x <- matrix(x, 1)
#' }
#' n <- ncol(x)
#' y <- matrix(x[, 1:(nobj - 1)], nrow(x))
#' z <- matrix(x[, nobj:n], nrow(x))
#' g <- 100 * (n - nobj + 1 + rowSums((z - 0.5)^2 - cos(20 * pi * (z - 0.5))))
#' tmp <- t(apply(y, 1, cumprod))
#' tmp <- cbind(t(apply(tmp, 1, rev)), 1)
#' tmp2 <- cbind(1, t(apply(1 - y, 1, rev)))
#' f <- tmp * tmp2 * 0.5 * (1 + g)
#' return(f)
#' }
#'
#' #Define uniformly distributed reference points.
#' ref_points <- generate_reference_points(3,12)
#'
#' #Not Run
#' \dontrun{
#' result <- rmoo(type = "real-valued",
#' fitness = dtlz1,
#' algorithm = "NSGA-III",
#' lower = c(0,0,0),
#' upper = c(1,1,1),
#' popSize = 92,
#' nObj = 3,
#' reference_dirs = ref_points,
#' monitor = FALSE,
#' maxiter = 500)
#' }
#'
#' #Example 3
#' #Two Objectives - Real Valued with Preference-guided
#' zdt2 <- function (x)
#' {
#' if (is.null(dim(x))) {
#' x <- matrix(x, nrow = 1)
#' }
#' n <- ncol(x)
#' g <- 1 + rowSums(x[, 2:n, drop = FALSE]) * 9/(n - 1)
#' return(cbind(x[, 1], g * (1 - (x[, 1]/g)^2)))
#' }
#'
#' #Define uniformly distributed reference points.
#' ref_points <- rbind(c(1.0, 0.0), c(0.0, 1.0), c(0.5, 0.5))
#'
#' #Not run
#' \dontrun{
#' result <- rmoo(type = "real-valued",
#' fitness = zdt2,
#' algorithm = "R-NSGA-II",
#' lower = c(0,0),
#' upper = c(1,1),
#' reference_dirs = ref_points,
#' popSize = 92,
#' nObj = 2,
#' monitor = FALSE,
#' maxiter = 500)
#'
#' }
#'
#' @export
#' @aliases rmoo,rmoo-main,rmoo-function
#' @rdname rmoo
rmoo <- function(type = c("binary", "real-valued", "permutation", "discrete"),
algorithm = c("NSGA-II", "NSGA-III", "R-NSGA-II"),
fitness, ...,
lower, upper, nBits, nvars,
population = rmooControl(type)$population,
selection = rmooControl(type)$selection,
crossover = rmooControl(type)$crossover,
mutation = rmooControl(type)$mutation,
pcrossover = 0.8,
pmutation = 0.1,
popSize = 50,
maxiter = 100,
nObj = NULL,
names = NULL,
suggestions = NULL,
monitor = if (interactive()) rmooMonitor else FALSE,
parallel = FALSE,
summary = FALSE,
seed = NULL,
reference_dirs = NULL,
epsilon = 0.001,
normalization = NULL,
extreme_points_as_ref_dirs = FALSE,
weights = NULL)
{
start_time <- Sys.time()
call <- match.call()
type <- match.arg(type, choices = eval(formals(rmoo)$type))
algorithm <- match.arg(algorithm, choices = eval(formals(rmoo)$algorithm))
callArgs <- list(...)
if (!is.function(population)) population <- get(population)
if (!is.function(selection)) selection <- get(selection)
if (!is.function(crossover)) crossover <- get(crossover)
if (!is.function(mutation)) mutation <- get(mutation)
# checkmate::assertCount(nObj)
# checkmate::assertCount(maxiter)
check_numeric_arg(nObj, "Objective number (nObj)", check_negative = TRUE)
check_numeric_arg(maxiter, "Maximum number of iterations (maxiter)", check_negative = TRUE)
check_function_arg(fitness, "Fitness function")
check_probability_arg(pcrossover, "Probability of crossover (pcrossover)")
check_probability_arg(pmutation, "Probability of mutation (pmutation)")
check_algorithm_arg(nObj, algorithm, normalization, reference_dirs)
if (popSize < 10) warning("The population size is less than 10.")
switch(type,
binary = {
# checkmate::assertCount(nBits)
check_numeric_arg(nBits, "Number of bits (nBits)", check_negative = TRUE)
nBits <- as.vector(nBits)[1]
lower <- upper <- NA
nvars <- nBits
if (is.null(names))
names <- paste0("x", 1:nvars)
},
`real-valued` = {
lnames <- names(lower)
unames <- names(upper)
lower <- as.vector(lower)
upper <- as.vector(upper)
check_numeric_arg(length(lower), "Length of lower")
check_numeric_arg(length(upper), "Length of upper")
nBits <- NA
nvars <- length(upper)
if (is.null(names) & !is.null(lnames)) names <- lnames
if (is.null(names) & !is.null(unames)) names <- unames
if (is.null(names))
names <- paste0("x", 1:nvars)
},
permutation = {
check_numeric_arg(as.vector(lower), "Lower bounds (lower)")
check_numeric_arg(as.vector(upper), "Upper bounds (upper)")
lower <- as.vector(lower)[1]
upper <- as.vector(upper)[1]
nBits <- NA
nvars <- length(seq.int(lower, upper))
if (is.null(names))
names <- paste0("x", 1:nvars)
},
discrete = {
check_numeric_arg(as.vector(lower), "Lower bounds (lower)")
check_numeric_arg(as.vector(upper), "Upper bounds (upper)")
check_numeric_arg(nvars, "Number of decision variables (nvars)")
lower <- as.vector(lower)[1]
upper <- as.vector(upper)[1]
nBits <- NA
if (is.null(names))
names <- paste0("x", 1:nvars)
}
)
if (is.null(suggestions)) {
suggestions <- matrix(nrow = 0, ncol = nvars)
} else {
if (is.vector(suggestions)) {
if (nvars > 1)
suggestions <- matrix(suggestions, nrow = 1)
else
suggestions <- matrix(suggestions, ncol = 1)
} else {
suggestions <- as.matrix(suggestions)
}
if (nvars != ncol(suggestions))
stop("Provided suggestions (ncol) matrix do not match number of variables of the problem")
}
# check monitor arg
if (is.logical(monitor)) {
if (monitor) monitor <- rmooMonitor
}
if (is.null(monitor)) monitor <- FALSE
# Start parallel computing (if needed)
if(is.logical(parallel)){
if(parallel) {
parallel <- startParallel(parallel)
stopCluster <- TRUE
} else {
parallel <- stopCluster <- FALSE
}
}else {
stopCluster <- if(inherits(parallel, "cluster")) FALSE else TRUE
parallel <- startParallel(parallel)
}
on.exit(if(parallel & stopCluster)
stopParallel(attr(parallel, "cluster")))
# define operator to use depending on parallel being TRUE or FALSE
`%DO%` <- if(parallel && requireNamespace("doRNG", quietly = TRUE)){
doRNG::`%dorng%` } else if (parallel){ foreach::`%dopar%` } else { foreach::`%do%` }
# set seed for reproducibility
if (!is.null(seed))
set.seed(seed)
i. <- NULL #dummy to trick R CMD check
Fitness <- matrix(NA, nrow = popSize, ncol = nObj)
fitnessSummary <- vector("list", maxiter)
p_fit <- q_fit <- matrix(NA_real_, nrow = popSize, ncol = nObj)
switch(type,
binary = {
Pop <- P <- Q <- matrix(NA_real_, nrow = popSize, ncol = nBits)
},
`real-valued` = {
Pop <- P <- Q <- matrix(NA_real_, nrow = popSize, ncol = nvars)
},
permutation = {
Pop <- P <- Q <- matrix(NA_real_, nrow = popSize, ncol = nvars)
},
discrete = {
Pop <- P <- Q <- matrix(NA_integer_, nrow = popSize, ncol = nvars)
}
)
ng <- min(nrow(suggestions), popSize)
if (ng > 0) {
Pop[1:ng, ] <- suggestions
}
object <- create_object_instance(algorithm, call, type, lower, upper, nBits,
nvars, names, popSize, maxiter, suggestions,
pcrossover, pmutation, Fitness,
fitnessSummary, reference_dirs, nObj)
if (maxiter == 0)
return(object)
if (popSize > ng) {
Pop[(ng + 1):popSize, ] <- population(object)[1:(popSize - ng), ]
}
object@population <- Pop
# Evaluate Solution Fitness
Fitness <- evaluate_fitness(parallel, popSize, Fitness, fitness, Pop, `%DO%`, callArgs)
object@population <- P <- Pop
object@fitness <- p_fit <- Fitness
# First Non-dominated Ranking
out <- non_dominated_fronts(object)
object@f <- out$fit
object@front <- matrix(unlist(out$fronts), ncol = 1, byrow = TRUE)
for (iter in seq_len(maxiter)) {
# initialize the iteration counter
object@iter <- iter
# Selection operator
if (is.function(selection)) {
sel <- selection(object, nObj)
Pop <- sel$population
Fitness <- sel$fitness
} else {
sel <- sample(1:popSize, size = popSize, replace = TRUE)
Pop <- object@population[sel, ]
Fitness <- object@fitness[sel, ]
}
object@population <- Pop
object@fitness <- Fitness
# Crossover operator
if (is.function(crossover) & pcrossover > 0) {
nmating <- floor(popSize / 2)
mating <- matrix(sample(1:(2 * nmating), size = (2 * nmating)), ncol = 2)
for (i in seq_len(nmating)) {
if (pcrossover > runif(1)) {
parents <- mating[i, ]
Crossover <- crossover(object, parents)
Pop[parents, ] <- Crossover$children
Fitness[parents, ] <- Crossover$fitness
}
}
}
object@population <- Pop
object@fitness <- Fitness
# Mutation operator
pm <- if (is.function(pmutation)) {
pmutation(object)
} else {pmutation}
if (is.function(mutation) & pm > 0) {
for (i in seq_len(popSize)) {
if (pm > runif(1)) {
Mutation <- mutation(object, i)
Pop[i, ] <- Mutation
Fitness[i, ] <- NA
}
}
}
object@population <- Q <- Pop
object@fitness <- q_fit <- Fitness
# Evaluate Solution Fitness
Fitness <- evaluate_fitness(parallel, popSize, Fitness, fitness, Pop, `%DO%`, callArgs)
object@population <- Q <- Pop
object@fitness <- q_fit <- Fitness
# R = P U Q
object@population <- Pop <- rbind(P, Q)
object@fitness <- rbind(p_fit, q_fit)
# Fast Non Dominated Sorting
out <- non_dominated_fronts(object)
object@f <- out$fit
object@front <- matrix(unlist(out$fronts), ncol = 1, byrow = TRUE)
out <- optimization_process(object, algorithm, nObj, epsilon, weights, normalization, extreme_points_as_ref_dirs)
object <- out$object
Pop <- out$p_pop
p_fit <- out$p_fit
object@population <- P <- Pop
object@fitness <- p_fit
# Fast Non Dominated Sorting
out <- non_dominated_fronts(object)
object@f <- out$fit
object@front <- matrix(unlist(out$fronts), ncol = 1, byrow = TRUE)
if (summary) {
fitnessSummary[[iter]] <- progress(object, callArgs)
object@summary <- fitnessSummary
} else {
object@summary <- list(NULL)
}
if (is.function(monitor)) {
# monitor(object = object, number_objective = nObj)
monitor(object = object, callArgs)
}
# if (max(Fitness, na.rm = TRUE) >= maxFitness)
# break
if (object@iter == maxiter)
break
}
object@execution_time <- as.numeric(difftime(Sys.time() , start_time, units = "secs"))
# solution <- object
return(object)
}
# setClass("Person", representation(name = "character", age = "numeric", greet = "function"))
#
# setValidity("Person", function(object) {
# if (nchar(object@name) == 0) {
# return("Name must be non-empty")
# }
# TRUE
# })
#
# setGeneric("age", function(object, birthdate) {
# standardGeneric("age")
# })
#
#
# setMethod("age", "Person", function(object, birthdate) {
# today <- Sys.Date()
# as.numeric(difftime(today, as.Date(birthdate), units = "weeks")) %/% 52
# })
#
#
# greetFunction <- function(person) {
# cat(paste0("Hello, my name is ", person@name, " and I am ", person@age, " years old.\n"))
# }
#
# hadley <- new("Person", name = "Hadley", age = 31, greet = greetFunction)
#
# hadley$age("1979-07-30")
#
# r_nsga_iii <- function(){
# get_ref_dirs_from_points <- function(ref_point, ref_dirs, mu = 0.1) {
# n_obj <- ncol(ref_point)
#
# val <- list()
#
# n_vector <- rep(1 / sqrt(n_obj), n_obj) # Normal vector of Das Dennis plane
#
#
# point_on_plane <- diag(n_obj)[1, ] # Point on Das-Dennis
#
# for (i in 1:nrow(ref_point)) {
# point <- ref_point[i,]
# ref_dir_for_aspiration_point <- ref_dirs * mu # Copy of computed reference directions
#
# cent <- colMeans(ref_dir_for_aspiration_point) # Find centroid of shrunken reference points
#
# # Project shrunken Das-Dennis points back onto original Das-Dennis hyperplane
# intercept <- line_plane_intersection(rep(0, n_obj), point, point_on_plane, n_vector)
# shift <- intercept - cent # shift vector
#
# ref_dir_for_aspiration_point <- sweep(ref_dir_for_aspiration_point, 2, shift, "+")
#
# # If reference directions are located outside of first octant, redefine points onto the border
# if (!all(ref_dir_for_aspiration_point > 0)) {
# ref_dir_for_aspiration_point[ref_dir_for_aspiration_point < 0] <- 0
# ref_dir_for_aspiration_point <- sweep(ref_dir_for_aspiration_point, 1, rowSums(ref_dir_for_aspiration_point), "/")
# }
# val <- c(val, list(ref_dir_for_aspiration_point))
# #val <- c(val, ref_dir_for_aspiration_point)
# }
#
# val <- c(val, list(diag(n_obj))) # Add extreme points
# # val <- c(val, diag(n_obj)) # Add extreme points
# return(do.call(rbind, val))
# # return(array(unlist(val), dim = c(length(val), n_obj)))
# }
#
#
# line_plane_intersection <- function(l_zero, l_one, p_zero, p_no, epsilon = 1e-6) {
#
# l <- l_one - l_zero
# dot <- sum(l * p_no)
#
# if (abs(dot) > epsilon) {
# w <- p_zero - l_zero
# d <- sum(w * p_no) / dot
# l <- l * d
# return(l_zero + l)
# } else {
# ref_proj <- l_one - sum((l_one - p_zero) * p_no) * p_no
#
# return(ref_proj)
# }
# }
# }
# ref_point <- rbind(c(1.0, 0.5, 0.2),c(0.3, 0.2, 0.6))
# ref_dirs <- generate_reference_points(3,12)
# pop_per_ref_point=50
# mu <- 0.1
# get_ref_dirs_from_points(ref_point, ref_dirs, mu = 0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.