knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "inst/extdata", out.width = "100%" )
predatoR
is a tool for mutation impact prediction based on network properties.
predatoR()
function is the wrapper function of predatoR
package.
predatoR()
works on each PDB respectively. For each PDB;
You can install the predatoR via devtools:
``` {r installation_guide, eval=FALSE} library(devtools) install_github("berkgurdamar/predatoR")
# Usage Mutation impact prediction can be done via `predatoR()` function: `predatoR()` uses data.frame structures as an input. data.frame should consist of __'PDB_ID'__, __'Chain'__, __'Position'__, __'Orig_AA'__, __'Mut_AA'__ and __'Gene_Name'__ (optional). Predictions can be made by using 2 different models, 5 Angstrom (Å)-all atoms model and 7Å-carbon alpha (Cα) atoms only model. ```r test_data <- as.data.frame(rbind(c("3SQJ", "A", 196, "GLN", "LEU", "ALB"), c("3SQJ", "A", 396, "GLU", "LYS", "ALB"))) colnames(test_data) <- c("PDB_ID", "Chain", "Position", "Orig_AA", "Mut_AA", "Gene_Name") knitr::kable(test_data, align = c("c", "c", "c", "c", "c", "c"))
predatoR()
can work with input which has partially included gene names.
library(predatoR) # Gene name included input_df <- as.data.frame(rbind(c("3SQJ", "A", 196, "GLN", "LEU", "ALB"), c("3SQJ", "A", 396, "GLU", "LYS", "ALB"))) pred_res <- predatoR(info_df = input_df, n_threads = 8, gene_name_info = TRUE) # Gene name not included input_df <- as.data.frame(rbind(c("3SQJ", "A", 196, "GLN", "LEU"), c("3SQJ", "A", 396, "GLU", "LYS"))) pred_res <- predatoR(info_df = input_df, n_threads = 8, gene_name_info = FALSE) # Partially included gene names input_df <- as.data.frame(rbind(c("3SQJ", "A", 196, "GLN", "LEU", "ALB"), c("3SQJ", "A", 396, "GLU", "LYS", ""))) pred_res <- predatoR(info_df = input_df, n_threads = 8, gene_name_info = TRUE)
predatoR()
function returns a data.frame which contains additional two columns; 'Prediction' and 'Probability'. 'Prediction' represents the result of the impact prediction and 'Probability' represents the probability that the mutation classified as Pathogenic or Neutral.
example_result <- as.data.frame(rbind(c("3SQJ", "A", "196", "GLN", "LEU", "ALB", "Neutral", "0.6521832"), c("3SQJ", "A", "396", "GLU", "LYS", "ALB", "Neutral", "0.6009792"))) colnames(example_result) <- c("PDB_ID", "Chain", "Position", "Orig_AA", "Mut_AA", "Gene_Name", "Prediction", "Probability") knitr::kable(example_result, align = c("c", "c", "c", "c", "c", "c", "c", "c"))
Network properties can be calculated by using different distance cutoffs. In this approach, predatoR()
does not make any prediction about the mutation, but returns a data frame contains all 24 features annotated to the dataset. Both network formalisation approaches also can be used.
# networks build using all atoms and 7.6Å cutoff prediction_result <- predatoR(input_df, distance_cutoff = 7.6, network_approach = "all") # networks build using only Cα atoms and 8Å cutoff prediction_result <- predatoR(input_df, distance_cutoff = 8, network_approach = "ca")
The wrapper function predatoR()
uses the utility functions below;
read_PDB()
PDB2connections()
degree_score()
eigen_centrality_score()
shorteset_path_score()
betweenness_score()
clique_score()
pagerank_score()
gnomad_scores()
BLOSUM62_score()
KEGG_pathway_number()
genic_intolerance()
GO_terms()
DisGeNET()
gene_essentiality()
GTEx()
amino_acid_features()
impact_prediction()
Utility functions can be used alone, for more detail please see vignette via vignette("predatoR_Vignette")
.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.