#' @title Performance measures.
#'
#' @description
#' A performance measure is evaluated after a single train/predict step and
#' returns a single number to assess the quality of the prediction (or maybe
#' only the model, think AIC). The measure itself knows whether it wants to be
#' minimized or maximized and for what tasks it is applicable.
#'
#' All supported measures can be found by [listMeasures] or as a table in the
#' tutorial appendix: <https://mlr.mlr-org.com/articles/tutorial/measures.html>.
#'
#' If you want a measure for a misclassification cost matrix, look at
#' [makeCostMeasure]. If you want to implement your own measure, look at
#' [makeMeasure].
#'
#' Most measures can directly be accessed via the function named after the
#' scheme measureX (e.g. measureSSE).
#'
#' For clustering measures, we compact the predicted cluster IDs such that they
#' form a continuous series starting with 1. If this is not the case, some of
#' the measures will generate warnings.
#'
#' Some measure have parameters. Their defaults are set in the constructor
#' [makeMeasure] and can be overwritten using [setMeasurePars].
#'
#' @param truth ([factor])\cr
#' Vector of the true class.
#' @param response ([factor])\cr
#' Vector of the predicted class.
#' @param negative (`character(1)`)\cr
#' The name of the negative class.
#' @param positive (`character(1)`)\cr
#' The name of the positive class.
#' @param probabilities ([numeric] | [matrix])\cr
#' a) For purely binary classification measures: The predicted probabilities for the positive class as a numeric vector.
#' b) For multiclass classification measures: The predicted probabilities for all classes, always as a numeric matrix, where
#' columns are named with class labels.
#' @name measures
#' @family performance
NULL
###############################################################################
### general ###
###############################################################################
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
featperc = makeMeasure(
id = "featperc", minimize = TRUE, best = 0, worst = 1,
properties = c("classif", "classif.multi", "multilabel", "regr", "surv", "costsens", "cluster", "req.model", "req.pred"),
name = "Percentage of original features used for model",
note = "Useful for feature selection.",
fun = function(task, model, pred, feats, extra.args) {
length(model$features) / sum(pred$task.desc$n.feat)
}
)
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
timetrain = makeMeasure(
id = "timetrain", minimize = TRUE, best = 0, worst = Inf,
properties = c("classif", "classif.multi", "multilabel", "regr", "surv", "costsens", "cluster", "req.model"),
name = "Time of fitting the model",
fun = function(task, model, pred, feats, extra.args) {
model$time
}
)
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
timepredict = makeMeasure(
id = "timepredict", minimize = TRUE, best = 0, worst = Inf,
properties = c("classif", "classif.multi", "multilabel", "regr", "surv", "costsens", "cluster", "req.pred"),
name = "Time of predicting test set",
fun = function(task, model, pred, feats, extra.args) {
pred$time
}
)
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
timeboth = makeMeasure(
id = "timeboth", minimize = TRUE, best = 0, worst = Inf,
properties = c("classif", "classif.multi", "multilabel", "regr", "surv", "costsens", "cluster", "req.model", "req.pred"),
name = "timetrain + timepredict",
fun = function(task, model, pred, feats, extra.args) {
model$time + pred$time
}
)
###############################################################################
### regression ###
###############################################################################
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
sse = makeMeasure(
id = "sse", minimize = TRUE, best = 0, worst = Inf,
properties = c("regr", "req.pred", "req.truth"),
name = "Sum of squared errors",
note = "Defined as: sum((response - truth)^2)",
fun = function(task, model, pred, feats, extra.args) {
measureSSE(pred$data$truth, pred$data$response)
}
)
#' @export measureSSE
#' @rdname measures
measureSSE = function(truth, response) {
sum((response - truth)^2)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
mse = makeMeasure(
id = "mse", minimize = TRUE, best = 0, worst = Inf,
properties = c("regr", "req.pred", "req.truth"),
name = "Mean of squared errors",
note = "Defined as: mean((response - truth)^2)",
fun = function(task, model, pred, feats, extra.args) {
measureMSE(pred$data$truth, pred$data$response)
}
)
#' @export measureMSE
#' @rdname measures
measureMSE = function(truth, response) {
mean((response - truth)^2)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
rmse = makeMeasure(
id = "rmse", minimize = TRUE, best = 0, worst = Inf,
properties = c("regr", "req.pred", "req.truth"),
name = "Root mean squared error",
note = "The RMSE is aggregated as sqrt(mean(rmse.vals.on.test.sets^2)). If you don't want that, you could also use `test.mean`.",
fun = function(task, model, pred, feats, extra.args) {
measureRMSE(pred$data$truth, pred$data$response)
},
aggr = test.rmse
)
#' @export measureRMSE
#' @rdname measures
measureRMSE = function(truth, response) {
sqrt(measureMSE(truth, response))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
medse = makeMeasure(
id = "medse", minimize = TRUE, best = 0, worst = Inf,
properties = c("regr", "req.pred", "req.truth"),
name = "Median of squared errors",
note = "Defined as: median((response - truth)^2).",
fun = function(task, model, pred, feats, extra.args) {
measureMEDSE(pred$data$truth, pred$data$response)
}
)
#' @export measureMEDSE
#' @rdname measures
measureMEDSE = function(truth, response) {
median((response - truth)^2)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
sae = makeMeasure(
id = "sae", minimize = TRUE, best = 0, worst = Inf,
properties = c("regr", "req.pred", "req.truth"),
name = "Sum of absolute errors",
note = "Defined as: sum(abs(response - truth))",
fun = function(task, model, pred, feats, extra.args) {
measureSAE(pred$data$truth, pred$data$response)
}
)
#' @export measureSAE
#' @rdname measures
measureSAE = function(truth, response) {
sum(abs(response - truth))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
mae = makeMeasure(
id = "mae", minimize = TRUE, best = 0, worst = Inf,
properties = c("regr", "req.pred", "req.truth"),
name = "Mean of absolute errors",
note = "Defined as: mean(abs(response - truth))",
fun = function(task, model, pred, feats, extra.args) {
measureMAE(pred$data$truth, pred$data$response)
}
)
#' @export measureMAE
#' @rdname measures
measureMAE = function(truth, response) {
mean(abs(response - truth))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
medae = makeMeasure(
id = "medae", minimize = TRUE, best = 0, worst = Inf,
properties = c("regr", "req.pred", "req.truth"),
name = "Median of absolute errors",
note = "Defined as: median(abs(response - truth)).",
fun = function(task, model, pred, feats, extra.args) {
measureMEDAE(pred$data$truth, pred$data$response)
}
)
#' @export measureMEDAE
#' @rdname measures
measureMEDAE = function(truth, response) {
median(abs(response - truth))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
rsq = makeMeasure(
id = "rsq", minimize = FALSE, best = 1, worst = -Inf,
properties = c("regr", "req.pred", "req.truth"),
name = "Coefficient of determination",
note = "Also called R-squared, which is 1 - residual_sum_of_squares / total_sum_of_squares.",
fun = function(task, model, pred, feats, extra.args) {
measureRSQ(pred$data$truth, pred$data$response)
}
)
#' @export measureRSQ
#' @rdname measures
measureRSQ = function(truth, response) {
rss = measureSSE(truth, response)
ess = sum((truth - mean(truth))^2L)
if (ess == 0) {
warning("Measure is undefined if all truth values are equal.")
return(NA_real_)
}
1 - rss / ess
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
expvar = makeMeasure(
id = "expvar", minimize = FALSE, best = 1, worst = 0,
properties = c("regr", "req.pred", "req.truth"),
name = "Explained variance",
note = "Similar to measure rsq (R-squared). Defined as explained_sum_of_squares / total_sum_of_squares.",
fun = function(task, model, pred, feats, extra.args) {
measureEXPVAR(pred$data$truth, pred$data$response)
}
)
#' @export measureEXPVAR
#' @rdname measures
measureEXPVAR = function(truth, response) {
regss = sum((response - mean(truth))^2L)
ess = sum((truth - mean(truth))^2L)
if (ess == 0) {
warning("Measure is undefined if all truth values are equal.")
return(NA_real_)
}
regss / ess
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
rrse = makeMeasure(
id = "rrse", minimize = TRUE, best = 0, worst = Inf,
properties = c("regr", "req.pred", "req.truth"),
name = "Root relative squared error",
note = "Defined as sqrt (sum_of_squared_errors / total_sum_of_squares). Undefined for single instances and when every truth value is identical. In this case the output will be NA.",
fun = function(task, model, pred, feats, extra.args) {
measureRRSE(pred$data$truth, pred$data$response)
}
)
#' @export measureRRSE
#' @rdname measures
measureRRSE = function(truth, response) {
tss = sum((truth - mean(truth))^2L)
if (tss == 0) {
warning("Measure is undefined if all truth values are equal.")
return(NA_real_)
}
sqrt(measureSSE(truth, response) / tss)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
rae = makeMeasure(
id = "rae", minimize = TRUE, best = 0, worst = Inf,
properties = c("regr", "req.pred", "req.truth"),
name = "Relative absolute error",
note = "Defined as sum_of_absolute_errors / mean_absolute_deviation. Undefined for single instances and when every truth value is identical. In this case the output will be NA.",
fun = function(task, model, pred, feats, extra.args) {
measureRAE(pred$data$truth, pred$data$response)
}
)
#' @export measureRAE
#' @rdname measures
measureRAE = function(truth, response) {
meanad = sum(abs(truth - mean(truth)))
if (meanad == 0) {
warning("Measure is undefined if all truth values are equal.")
return(NA_real_)
}
return(measureSAE(truth, response) / meanad)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
mape = makeMeasure(
id = "mape", minimize = TRUE, best = 0, worst = Inf,
properties = c("regr", "req.pred", "req.truth"),
name = "Mean absolute percentage error",
note = "Defined as the abs(truth_i - response_i) / truth_i. Won't work if any truth value is equal to zero. In this case the output will be NA.",
fun = function(task, model, pred, feats, extra.args) {
measureMAPE(pred$data$truth, pred$data$response)
}
)
#' @export measureMAPE
#' @rdname measures
measureMAPE = function(truth, response) {
if (any(truth == 0)) {
warning("Measure is undefined if any truth value is equal to 0.")
return(NA_real_)
}
return(mean(abs((truth - response) / truth)))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
msle = makeMeasure(
id = "msle", minimize = TRUE, best = 0, worst = Inf,
properties = c("regr", "req.pred", "req.truth"),
name = "Mean squared logarithmic error",
note = "Defined as: mean((log(response + 1, exp(1)) - log(truth + 1, exp(1)))^2).
This measure is mostly used for count data, note that all predicted and actual target values must be greater or equal '-1'
to compute the measure.",
fun = function(task, model, pred, feats, extra.args) {
measureMSLE(pred$data$truth, pred$data$response)
}
)
#' @export measureMSLE
#' @rdname measures
measureMSLE = function(truth, response) {
if (any(truth < -1)) {
stop("All truth values must be greater or equal -1")
}
if (any(response < -1)) {
stop("All predicted values must be greater or equal -1")
}
mean((log(response + 1) - log(truth + 1))^2)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
rmsle = makeMeasure(
id = "rmsle", minimize = TRUE, best = 0, worst = Inf,
properties = c("regr", "req.pred", "req.truth"),
name = "Root mean squared logarithmic error",
note = "Defined as: sqrt(msle). Definition taken from:
Definition taken from: https: / /www.kaggle.com / wiki / RootMeanSquaredLogarithmicError.
This measure is mostly used for count data, note that all predicted and actual target values
must be greater or equal '-1' to compute the measure.",
fun = function(task, model, pred, feats, extra.args) {
measureRMSLE(pred$data$truth, pred$data$response)
}
)
#' @export measureRMSLE
#' @rdname measures
measureRMSLE = function(truth, response) {
sqrt(measureMSLE(truth, response))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
kendalltau = makeMeasure(
id = "kendalltau", minimize = FALSE, best = 1, worst = -1,
properties = c("regr", "req.pred", "req.truth"),
name = "Kendall's tau",
note = "Defined as: Kendall's tau correlation between truth and response. Only looks at the order.
See Rosset et al.: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.1398&rep=rep1&type=pdf.",
fun = function(task, model, pred, feats, extra.args) {
measureKendallTau(pred$data$truth, pred$data$response)
}
)
#' @export measureKendallTau
#' @rdname measures
measureKendallTau = function(truth, response) {
cor(truth, response, use = "na.or.complete", method = "kendall")
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
spearmanrho = makeMeasure(
id = "spearmanrho", minimize = FALSE, best = 1, worst = -1,
properties = c("regr", "req.pred", "req.truth"),
name = "Spearman's rho",
note = "Defined as: Spearman's rho correlation between truth and response. Only looks at the order.
See Rosset et al.: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.1398&rep=rep1&type=pdf.",
fun = function(task, model, pred, feats, extra.args) {
measureSpearmanRho(pred$data$truth, pred$data$response)
}
)
#' @export measureSpearmanRho
#' @rdname measures
measureSpearmanRho = function(truth, response) {
cor(truth, response, use = "na.or.complete", method = "spearman")
}
###############################################################################
### classif multi ###
###############################################################################
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
mmce = makeMeasure(
id = "mmce", minimize = TRUE, best = 0, worst = 1,
properties = c("classif", "classif.multi", "req.pred", "req.truth"),
name = "Mean misclassification error",
note = "Defined as: mean(response != truth)",
fun = function(task, model, pred, feats, extra.args) {
measureMMCE(pred$data$truth, pred$data$response)
}
)
#' @export measureMMCE
#' @rdname measures
measureMMCE = function(truth, response) {
mean(response != truth)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
acc = makeMeasure(
id = "acc", minimize = FALSE, best = 1, worst = 0,
properties = c("classif", "classif.multi", "req.pred", "req.truth"),
name = "Accuracy",
note = "Defined as: mean(response == truth)",
fun = function(task, model, pred, feats, extra.args) {
measureACC(pred$data$truth, pred$data$response)
}
)
#' @export measureACC
#' @rdname measures
measureACC = function(truth, response) {
mean(response == truth)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
ber = makeMeasure(
id = "ber", minimize = TRUE, best = 0, worst = 1,
properties = c("classif", "classif.multi", "req.pred", "req.truth"),
name = "Balanced error rate",
note = "Mean of misclassification error rates on all individual classes.",
fun = function(task, model, pred, feats, extra.args) {
measureBER(pred$data$truth, pred$data$response)
}
)
#' @export measureBER
#' @rdname measures
measureBER = function(truth, response) {
# special case for predictions from FailureModel
if (anyMissing(response)) {
return(NA_real_)
}
mean(diag(1 - (table(truth, response) / table(truth, truth))))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
multiclass.aunu = makeMeasure(
id = "multiclass.aunu", minimize = FALSE, best = 1, worst = 0.5,
properties = c("classif", "classif.multi", "req.pred", "req.truth", "req.prob"),
name = "Average 1 vs. rest multiclass AUC",
note = "Computes the AUC treating a c-dimensional classifier as c two-dimensional classifiers, where classes are assumed to have uniform distribution, in order to have a measure which is independent of class distribution change. See Ferri et al.: https://www.math.ucdavis.edu/~saito/data/roc/ferri-class-perf-metrics.pdf.",
fun = function(task, model, pred, feats, extra.args) {
measureAUNU(getPredictionProbabilities(pred, pred$task.desc$class.levels), pred$data$truth)
}
)
#' @export measureAUNU
#' @rdname measures
measureAUNU = function(probabilities, truth) {
if (length(unique(truth)) != nlevels(truth)) {
warning("Measure is undefined if there isn't at least one sample per class.")
return(NA_real_)
}
mean(vnapply(1:nlevels(truth), function(i) colAUC(probabilities[, i], truth == levels(truth)[i])))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
multiclass.aunp = makeMeasure(
id = "multiclass.aunp", minimize = FALSE, best = 1, worst = 0.5,
properties = c("classif", "classif.multi", "req.pred", "req.truth", "req.prob"),
name = "Weighted average 1 vs. rest multiclass AUC",
note = "Computes the AUC treating a c-dimensional classifier as c two-dimensional classifiers, taking into account the prior probability of each class. See Ferri et al.: https://www.math.ucdavis.edu/~saito/data/roc/ferri-class-perf-metrics.pdf.",
fun = function(task, model, pred, feats, extra.args) {
measureAUNP(getPredictionProbabilities(pred, pred$task.desc$class.levels), pred$data$truth)
}
)
#' @export measureAUNP
#' @rdname measures
measureAUNP = function(probabilities, truth) {
if (length(unique(truth)) != nlevels(truth)) {
warning("Measure is undefined if there isn't at least one sample per class.")
return(NA_real_)
}
sum(vnapply(1:nlevels(truth), function(i) mean(truth == levels(truth)[i]) * colAUC(probabilities[, i], truth == levels(truth)[i])))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
multiclass.au1u = makeMeasure(
id = "multiclass.au1u", minimize = FALSE, best = 1, worst = 0.5,
properties = c("classif", "classif.multi", "req.pred", "req.truth", "req.prob"),
name = "Average 1 vs. 1 multiclass AUC",
note = "Computes AUC of c(c - 1) binary classifiers (all possible pairwise combinations) while considering uniform distribution of the classes. See Ferri et al.: https://www.math.ucdavis.edu/~saito/data/roc/ferri-class-perf-metrics.pdf.",
fun = function(task, model, pred, feats, extra.args) {
measureAU1U(getPredictionProbabilities(pred, pred$task.desc$class.levels), pred$data$truth)
}
)
#' @export measureAU1U
#' @rdname measures
measureAU1U = function(probabilities, truth) {
m = colAUC(probabilities, truth)
c = c(combn(1:nlevels(truth), 2))
mean(m[cbind(rep(seq_len(nrow(m)), each = 2), c)])
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
multiclass.au1p = makeMeasure(
id = "multiclass.au1p", minimize = FALSE, best = 1, worst = 0.5,
properties = c("classif", "classif.multi", "req.pred", "req.truth", "req.prob"),
name = "Weighted average 1 vs. 1 multiclass AUC",
note = "Computes AUC of c(c - 1) binary classifiers while considering the a priori distribution of the classes. See Ferri et al.: https://www.math.ucdavis.edu/~saito/data/roc/ferri-class-perf-metrics.pdf.",
fun = function(task, model, pred, feats, extra.args) {
measureAU1P(getPredictionProbabilities(pred, pred$task.desc$class.levels), pred$data$truth)
}
)
#' @export measureAU1P
#' @rdname measures
measureAU1P = function(probabilities, truth) {
m = colAUC(probabilities, truth)
weights = table(truth) / length(truth)
m = m * matrix(rep(weights, each = nrow(m)), ncol = length(weights))
c = c(combn(1:nlevels(truth), 2))
sum(m[cbind(rep(seq_len(nrow(m)), each = 2), c)]) / (nlevels(truth) - 1)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
multiclass.brier = makeMeasure(
id = "multiclass.brier", minimize = TRUE, best = 0, worst = 2,
properties = c("classif", "classif.multi", "req.pred", "req.truth", "req.prob"),
name = "Multiclass Brier score",
note = "Defined as: (1/n) sum_i sum_j (y_ij - p_ij)^2, where y_ij = 1 if observation i has class j (else 0), and p_ij is the predicted probability of observation i for class j. From http://docs.lib.noaa.gov/rescue/mwr/078/mwr-078-01-0001.pdf.",
fun = function(task, model, pred, feats, extra.args) {
measureMulticlassBrier(getPredictionProbabilities(pred, pred$task.desc$class.levels), pred$data$truth)
}
)
#' @export measureMulticlassBrier
#' @rdname measures
measureMulticlassBrier = function(probabilities, truth) {
truth = factor(truth, levels = colnames(probabilities))
mat01 = createDummyFeatures(truth)
mean(rowSums((probabilities - mat01)^2))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
logloss = makeMeasure(
id = "logloss", minimize = TRUE, best = 0, worst = Inf,
properties = c("classif", "classif.multi", "req.truth", "req.prob"),
name = "Logarithmic loss",
note = "Defined as: -mean(log(p_i)), where p_i is the predicted probability of the true class of observation i. Inspired by https://www.kaggle.com/wiki/MultiClassLogLoss.",
fun = function(task, model, pred, feats, extra.args) {
measureLogloss(getPredictionProbabilities(pred, cl = pred$task.desc$class.levels), pred$data$truth)
}
)
#' @export measureLogloss
#' @rdname measures
measureLogloss = function(probabilities, truth) {
eps = 1e-15
# let's confine the predicted probabilities to [eps,1 - eps], so logLoss doesn't reach infinity under any circumstance
probabilities[probabilities > 1 - eps] = 1 - eps
probabilities[probabilities < eps] = eps
truth = match(as.character(truth), colnames(probabilities))
p = getRowEls(probabilities, truth)
-1 * mean(log(p))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
ssr = makeMeasure(
id = "ssr", minimize = FALSE, best = 1, worst = 0,
properties = c("classif", "classif.multi", "req.truth", "req.prob"),
name = "Spherical Scoring Rule",
note = "Defined as: mean(p_i(sum_j(p_ij))), where p_i is the predicted probability of the true class of observation i and p_ij is the predicted probablity of observation i for class j.
See: Bickel, J. E. (2007). Some comparisons among quadratic, spherical, and logarithmic scoring rules. Decision Analysis, 4(2), 49-65.",
fun = function(task, model, pred, feats, extra.args) {
measureSSR(getPredictionProbabilities(pred, cl = pred$task.desc$class.levels), pred$data$truth)
}
)
#' @export measureSSR
#' @rdname measures
measureSSR = function(probabilities, truth) {
truth = match(as.character(truth), colnames(probabilities))
p = getRowEls(probabilities, truth)
mean(p / sqrt(rowSums(probabilities^2)))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
qsr = makeMeasure(
id = "qsr", minimize = FALSE, best = 1, worst = -1,
properties = c("classif", "classif.multi", "req.truth", "req.prob"),
name = "Quadratic Scoring Rule",
note = "Defined as: 1 - (1/n) sum_i sum_j (y_ij - p_ij)^2, where y_ij = 1 if observation i has class j (else 0), and p_ij is the predicted probablity of observation i for class j.
This scoring rule is the same as 1 - multiclass.brier.
See: Bickel, J. E. (2007). Some comparisons among quadratic, spherical, and logarithmic scoring rules. Decision Analysis, 4(2), 49-65.",
fun = function(task, model, pred, feats, extra.args) {
measureQSR(getPredictionProbabilities(pred, cl = pred$task.desc$class.levels), pred$data$truth)
}
)
#' @export measureQSR
#' @rdname measures
measureQSR = function(probabilities, truth) {
# We add this line because binary tasks only output one probability column
if (is.null(dim(probabilities))) probabilities = cbind(probabilities, 1 - probabilities)
truth = factor(truth, levels = colnames(probabilities))
1 - mean(rowSums((probabilities - createDummyFeatures(truth))^2))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
lsr = makeMeasure(
id = "lsr", minimize = FALSE, best = 0, worst = -Inf,
properties = c("classif", "classif.multi", "req.truth", "req.prob"),
name = "Logarithmic Scoring Rule",
note = "Defined as: mean(log(p_i)), where p_i is the predicted probability of the true class of observation i.
This scoring rule is the same as the negative logloss, self-information or surprisal.
See: Bickel, J. E. (2007). Some comparisons among quadratic, spherical, and logarithmic scoring rules. Decision Analysis, 4(2), 49-65.",
fun = function(task, model, pred, feats, extra.args) {
measureLSR(getPredictionProbabilities(pred, cl = pred$task.desc$class.levels), pred$data$truth)
}
)
#' @export measureLSR
#' @rdname measures
measureLSR = function(probabilities, truth) {
-1 * measureLogloss(probabilities, truth)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
kappa = makeMeasure(
id = "kappa", minimize = FALSE, best = 1, worst = -1,
properties = c("classif", "classif.multi", "req.pred", "req.truth"),
name = "Cohen's kappa",
note = "Defined as: 1 - (1 - p0) / (1 - pe). With: p0 = 'observed frequency of
agreement' and pe = 'expected agremeent frequency under independence",
fun = function(task, model, pred, feats, extra.args) {
measureKAPPA(pred$data$truth, pred$data$response)
}
)
#' @export measureKAPPA
#' @rdname measures
measureKAPPA = function(truth, response) {
# get confusion matrix
conf.mat = table(truth, response)
conf.mat = conf.mat / sum(conf.mat)
# observed agreement frequency
p0 = sum(diag(conf.mat))
# get expected probs under independence
rowsum = rowSums(conf.mat)
colsum = colSums(conf.mat)
pe = sum(rowsum * colsum) / sum(conf.mat)^2
# calculate kappa
1 - (1 - p0) / (1 - pe)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
wkappa = makeMeasure(
id = "wkappa", minimize = FALSE, best = 1, worst = -1,
properties = c("classif", "classif.multi", "req.pred", "req.truth"),
name = "Mean quadratic weighted kappa",
note = "Defined as: 1 - sum(weights * conf.mat) / sum(weights * expected.mat),
the weight matrix measures seriousness of disagreement with the squared euclidean metric.",
fun = function(task, model, pred, feats, extra.args) {
measureWKAPPA(pred$data$truth, pred$data$response)
}
)
#' @export measureWKAPPA
#' @rdname measures
measureWKAPPA = function(truth, response) {
# get confusion matrix
conf.mat = table(truth, response)
conf.mat = conf.mat / sum(conf.mat)
# get expected probs under independence
rowsum = rowSums(conf.mat)
colsum = colSums(conf.mat)
expected.mat = rowsum %*% t(colsum)
# get weights
class.values = seq_along(levels(truth)) - 1L
weights = outer(class.values, class.values, FUN = function(x, y) (x - y)^2)
# calculate weighted kappa
1 - sum(weights * conf.mat) / sum(weights * expected.mat)
}
###############################################################################
### classif binary ###
###############################################################################
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
auc = makeMeasure(
id = "auc", minimize = FALSE, best = 1, worst = 0,
properties = c("classif", "req.pred", "req.truth", "req.prob"),
name = "Area under the curve",
note = "Integral over the graph that results from computing fpr and tpr for many different thresholds.",
fun = function(task, model, pred, feats, extra.args) {
if (anyMissing(pred$data$response) || length(unique(pred$data$truth)) == 1L) {
return(NA_real_)
}
measureAUC(getPredictionProbabilities(pred), pred$data$truth, pred$task.desc$negative, pred$task.desc$positive)
}
)
#' @export measureAUC
#' @rdname measures
measureAUC = function(probabilities, truth, negative, positive) {
if (is.factor(truth)) {
i = as.integer(truth) == which(levels(truth) == positive)
} else {
i = truth == positive
}
if (length(unique(i)) < 2L) {
stop("truth vector must have at least two classes")
}
# Use fast ranking function from data.table for larger vectors
if (length(i) > 5000L) {
r = frankv(probabilities)
} else {
r = rank(probabilities)
}
n.pos = as.numeric(sum(i))
n.neg = length(i) - n.pos
(sum(r[i]) - n.pos * (n.pos + 1) / 2) / (n.pos * n.neg)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
brier = makeMeasure(
id = "brier", minimize = TRUE, best = 0, worst = 1,
properties = c("classif", "req.pred", "req.truth", "req.prob"),
name = "Brier score",
note = "The Brier score is defined as the quadratic difference between the probability and the value (1,0) for the class.
That means we use the numeric representation 1 and 0 for our target classes. It is similiar to the mean squared error in regression.
multiclass.brier is the sum over all one vs. all comparisons and for a binary classifcation 2 * brier.",
fun = function(task, model, pred, feats, extra.args) {
measureBrier(getPredictionProbabilities(pred), pred$data$truth, pred$task.desc$negative, pred$task.desc$positive)
}
)
#' @export measureBrier
#' @rdname measures
measureBrier = function(probabilities, truth, negative, positive) {
y = as.numeric(truth == positive)
mean((y - probabilities)^2)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
brier.scaled = makeMeasure(
id = "brier.scaled", minimize = FALSE, best = 1, worst = 0,
properties = c("classif", "req.pred", "req.truth", "req.prob"),
name = "Brier scaled",
note = "Brier score scaled to [0,1], see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575184/.",
fun = function(task, model, pred, feats, extra.args) {
measureBrierScaled(getPredictionProbabilities(pred), pred$data$truth, pred$task.desc$negative, pred$task.desc$positive)
}
)
#' @export measureBrierScaled
#' @rdname measures
measureBrierScaled = function(probabilities, truth, negative, positive) {
y = as.numeric(truth == positive)
brier = mean((y - probabilities)^2)
inc = mean(probabilities)
brier.max = inc * (1 - inc)^2 + (1 - inc) * inc^2
1 - brier / brier.max
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
bac = makeMeasure(
id = "bac", minimize = FALSE, best = 1, worst = 0,
properties = c("classif", "classif.multi", "req.pred", "req.truth"),
name = "Balanced accuracy",
note = "For binary tasks, mean of true positive rate and true negative rate.",
fun = function(task, model, pred, feats, extra.args) {
measureBAC(pred$data$truth, pred$data$response)
}
)
#' @export measureBAC
#' @rdname measures
measureBAC = function(truth, response) {
mean(diag(table(truth, response) / table(truth, truth)))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
tp = makeMeasure(
id = "tp", minimize = FALSE, best = Inf, worst = 0,
properties = c("classif", "req.pred", "req.truth"),
name = "True positives",
note = "Sum of all correctly classified observations in the positive class.",
fun = function(task, model, pred, feats, extra.args) {
measureTP(pred$data$truth, pred$data$response, pred$task.desc$positive)
}
)
#' @export measureTP
#' @rdname measures
measureTP = function(truth, response, positive) {
sum(truth == response & response == positive)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
tn = makeMeasure(
id = "tn", minimize = FALSE, best = Inf, worst = 0,
properties = c("classif", "req.pred", "req.truth"),
name = "True negatives",
note = "Sum of correctly classified observations in the negative class. Also called correct rejections.",
fun = function(task, model, pred, feats, extra.args) {
measureTN(pred$data$truth, pred$data$response, pred$task.desc$negative)
}
)
#' @export measureTN
#' @rdname measures
measureTN = function(truth, response, negative) {
sum(truth == response & response == negative)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
fp = makeMeasure(
id = "fp", minimize = TRUE, best = 0, worst = Inf,
properties = c("classif", "req.pred", "req.truth"),
name = "False positives",
note = "Sum of misclassified observations in the positive class. Also called false alarms.",
fun = function(task, model, pred, feats, extra.args) {
measureFP(pred$data$truth, pred$data$response, pred$task.desc$positive)
}
)
#' @export measureFP
#' @rdname measures
measureFP = function(truth, response, positive) {
sum(truth != response & response == positive)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
fn = makeMeasure(
id = "fn", minimize = TRUE, best = 0, worst = Inf,
properties = c("classif", "req.pred", "req.truth"),
name = "False negatives",
note = "Sum of misclassified observations in the negative class. Also called misses.",
fun = function(task, model, pred, feats, extra.args) {
measureFN(pred$data$truth, pred$data$response, pred$task.desc$negative)
}
)
#' @export measureFN
#' @rdname measures
measureFN = function(truth, response, negative) {
sum(truth != response & response == negative)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
tpr = makeMeasure(
id = "tpr", minimize = FALSE, best = 1, worst = 0,
properties = c("classif", "req.pred", "req.truth"),
name = "True positive rate",
note = "Percentage of correctly classified observations in the positive class. Also called hit rate or recall or sensitivity.",
fun = function(task, model, pred, feats, extra.args) {
measureTPR(pred$data$truth, pred$data$response, pred$task.desc$positive)
}
)
#' @export measureTPR
#' @rdname measures
measureTPR = function(truth, response, positive) {
measureTP(truth, response, positive) / sum(truth == positive)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
tnr = makeMeasure(
id = "tnr", minimize = FALSE, best = 1, worst = 0,
properties = c("classif", "req.pred", "req.truth"),
name = "True negative rate",
note = "Percentage of correctly classified observations in the negative class. Also called specificity.",
fun = function(task, model, pred, feats, extra.args) {
measureTNR(pred$data$truth, pred$data$response, pred$task.desc$negative)
}
)
#' @export measureTNR
#' @rdname measures
measureTNR = function(truth, response, negative) {
measureTN(truth, response, negative) / sum(truth == negative)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
fpr = makeMeasure(
id = "fpr", minimize = TRUE, best = 0, worst = 1,
properties = c("classif", "req.pred", "req.truth"),
name = "False positive rate",
note = "Percentage of misclassified observations in the positive class. Also called false alarm rate or fall-out.",
fun = function(task, model, pred, feats, extra.args) {
measureFPR(pred$data$truth, pred$data$response, pred$task.desc$negative, pred$task.desc$positive)
}
)
#' @export measureFPR
#' @rdname measures
measureFPR = function(truth, response, negative, positive) {
measureFP(truth, response, positive) / sum(truth == negative)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
fnr = makeMeasure(
id = "fnr", minimize = TRUE, best = 0, worst = 1,
properties = c("classif", "req.pred", "req.truth"),
name = "False negative rate",
note = "Percentage of misclassified observations in the negative class.",
fun = function(task, model, pred, feats, extra.args) {
measureFNR(pred$data$truth, pred$data$response, pred$task.desc$negative, pred$task.desc$positive)
}
)
#' @export measureFNR
#' @rdname measures
measureFNR = function(truth, response, negative, positive) {
measureFN(truth, response, negative) / sum(truth == positive)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
ppv = makeMeasure(
id = "ppv", minimize = FALSE, best = 1, worst = 0,
properties = c("classif", "req.pred", "req.truth"),
name = "Positive predictive value",
note = "Defined as: tp / (tp + fp). Also called precision. If the denominator is 0, PPV is set to be either 1 or 0 depending on whether the highest probability prediction is positive (1) or negative (0).",
fun = function(task, model, pred, feats, extra.args) {
if (pred$predict.type == "prob") {
prob = getPredictionProbabilities(pred)
} else {
prob = NULL
}
measurePPV(pred$data$truth, pred$data$response, pred$task.desc$positive, prob)
}
)
#' @export measurePPV
#' @rdname measures
measurePPV = function(truth, response, positive, probabilities = NULL) {
denominator = sum(response == positive)
ifelse(denominator == 0, measureEdgeCase(truth, positive, probabilities), measureTP(truth, response, positive) / denominator)
}
measureEdgeCase = function(truth, positive, prob) {
if (!is.null(prob)) {
rs = sort(prob, index.return = TRUE)
erst = ifelse(truth[getLast(rs$ix)] == positive, 1, 0)
} else {
erst = NA
}
erst
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
npv = makeMeasure(
id = "npv", minimize = FALSE, best = 1, worst = 0,
properties = c("classif", "req.pred", "req.truth"),
name = "Negative predictive value",
note = "Defined as: tn / (tn + fn).",
fun = function(task, model, pred, feats, extra.args) {
measureNPV(pred$data$truth, pred$data$response, pred$task.desc$negative)
}
)
#' @export measureNPV
#' @rdname measures
measureNPV = function(truth, response, negative) {
measureTN(truth, response, negative) / sum(response == negative)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
fdr = makeMeasure(
id = "fdr", minimize = TRUE, best = 0, worst = 1,
properties = c("classif", "req.pred", "req.truth"),
name = "False discovery rate",
note = "Defined as: fp / (tp + fp).",
fun = function(task, model, pred, feats, extra.args) {
measureFDR(pred$data$truth, pred$data$response, pred$task.desc$positive)
}
)
#' @export measureFDR
#' @rdname measures
measureFDR = function(truth, response, positive) {
measureFP(truth, response, positive) / sum(response == positive)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
mcc = makeMeasure(
id = "mcc", minimize = FALSE,
properties = c("classif", "req.pred", "req.truth"), best = 1, worst = -1,
name = "Matthews correlation coefficient",
note = "Defined as (tp * tn - fp * fn) / sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)), denominator set to 1 if 0",
fun = function(task, model, pred, feats, extra.args) {
measureMCC(pred$data$truth, pred$data$response, pred$task.desc$negative, pred$task.desc$positive)
}
)
#' @export measureMCC
#' @rdname measures
measureMCC = function(truth, response, negative, positive) {
tn = as.numeric(measureTN(truth, response, negative))
tp = as.numeric(measureTP(truth, response, positive))
fn = as.numeric(measureFN(truth, response, negative))
fp = as.numeric(measureFP(truth, response, positive))
denom = sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
# According to Wikipedia, the denominator can be set arbitrarily if it's 0. 1 seems to make as much sense as anything else.
if (denom == 0) denom = 1
(tp * tn - fp * fn) / denom
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
f1 = makeMeasure(
id = "f1", minimize = FALSE, best = 1, worst = 0,
properties = c("classif", "req.pred", "req.truth"),
name = "F1 measure",
note = "Defined as: 2 * tp/ (sum(truth == positive) + sum(response == positive))",
fun = function(task, model, pred, feats, extra.args) {
measureF1(pred$data$truth, pred$data$response, pred$task.desc$positive)
}
)
#' @export measureF1
#' @rdname measures
measureF1 = function(truth, response, positive) {
2 * measureTP(truth, response, positive) /
(sum(truth == positive) + sum(response == positive))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
gmean = makeMeasure(
id = "gmean", minimize = FALSE, best = 1, worst = 0,
properties = c("classif", "req.pred", "req.truth"),
name = "G-mean",
note = "Geometric mean of recall and specificity.",
fun = function(task, model, pred, feats, extra.args) {
measureGMEAN(pred$data$truth, pred$data$response, pred$task.desc$negative, pred$task.desc$positive)
}
)
#' @export measureGMEAN
#' @rdname measures
#' @references
#' He, H. & Garcia, E. A. (2009)
#' *Learning from Imbalanced Data.*
#' IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 9. pp. 1263-1284.
measureGMEAN = function(truth, response, negative, positive) {
sqrt(measureTPR(truth, response, positive) * measureTNR(truth, response, negative))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
gpr = makeMeasure(
id = "gpr", minimize = FALSE, best = 1, worst = 0,
properties = c("classif", "req.pred", "req.truth"),
name = "Geometric mean of precision and recall.",
note = "Defined as: sqrt(ppv * tpr)",
fun = function(task, model, pred, feats, extra.args) {
measureGPR(pred$data$truth, pred$data$response, pred$task.desc$positive)
}
)
#' @export measureGPR
#' @rdname measures
measureGPR = function(truth, response, positive) {
sqrt(measurePPV(truth, response, positive) * measureTPR(truth, response, positive))
}
###############################################################################
### multilabel ###
###############################################################################
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
multilabel.hamloss = makeMeasure(
id = "multilabel.hamloss", minimize = TRUE, best = 0, worst = 1,
properties = c("multilabel", "req.pred", "req.truth"),
name = "Hamming loss",
note = "Proportion of labels that are predicted incorrectly, following the definition
by Charte and Charte: https://journal.r-project.org/archive/2015-2/charte-charte.pdf.",
fun = function(task, model, pred, feats, extra.args) {
measureMultilabelHamloss(
getPredictionTruth.PredictionMultilabel(pred),
getPredictionResponse.PredictionMultilabel(pred))
}
)
#' @export measureMultilabelHamloss
#' @rdname measures
measureMultilabelHamloss = function(truth, response) {
mean(truth != response)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
multilabel.subset01 = makeMeasure(
id = "multilabel.subset01", minimize = TRUE, best = 0, worst = 1,
properties = c("multilabel", "req.pred", "req.truth"),
name = "Subset-0-1 loss",
note = "Proportion of observations where the complete multilabel set (all 0-1-labels) is predicted incorrectly,
following the definition by Charte and Charte: https://journal.r-project.org/archive/2015-2/charte-charte.pdf.",
fun = function(task, model, pred, feats, extra.args) {
measureMultilabelSubset01(
getPredictionTruth.PredictionMultilabel(pred),
getPredictionResponse.PredictionMultilabel(pred))
}
)
#' @export measureMultilabelSubset01
#' @rdname measures
measureMultilabelSubset01 = function(truth, response) {
mean(!apply(truth == response, 1, all))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
multilabel.f1 = makeMeasure(
id = "multilabel.f1", minimize = FALSE, best = 1, worst = 0,
properties = c("multilabel", "req.pred", "req.truth"),
name = "F1 measure (multilabel)",
note = "Harmonic mean of precision and recall on a per instance basis (Micro-F1), following the
definition by Montanes et al.: http: / /www.sciencedirect.com / science / article / pii / S0031320313004019.
Fractions where the denominator becomes 0 are replaced with 1 before computing the average across all instances.",
fun = function(task, model, pred, feats, extra.args) {
measureMultilabelF1(
getPredictionTruth.PredictionMultilabel(pred),
getPredictionResponse.PredictionMultilabel(pred))
}
)
#' @export measureMultilabelF1
#' @rdname measures
measureMultilabelF1 = function(truth, response) {
numerator = 2 * rowSums(truth & response)
denominator = rowSums(truth + response)
mean(ifelse(denominator == 0, 1, numerator / denominator))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
multilabel.acc = makeMeasure(
id = "multilabel.acc", minimize = FALSE, best = 1, worst = 0,
properties = c("multilabel", "req.pred", "req.truth"),
name = "Accuracy (multilabel)",
note = "Averaged proportion of correctly predicted labels with respect to the total number of labels for each instance,
following the definition by Charte and Charte: https: / /journal.r-project.org / archive / 2015 - 2 / charte-charte.pdf.
Fractions where the denominator becomes 0 are replaced with 1 before computing the average across all instances.",
fun = function(task, model, pred, feats, extra.args) {
measureMultilabelACC(
getPredictionTruth.PredictionMultilabel(pred),
getPredictionResponse.PredictionMultilabel(pred))
}
)
#' @export measureMultilabelACC
#' @rdname measures
measureMultilabelACC = function(truth, response) {
numerator = rowSums(truth & response)
denominator = rowSums(truth | response)
mean(ifelse(denominator == 0, 1, numerator / denominator))
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
multilabel.ppv = makeMeasure(
id = "multilabel.ppv", minimize = FALSE, best = 1, worst = 0,
properties = c("multilabel", "req.pred", "req.truth"),
name = "Positive predictive value (multilabel)",
note = "Also called precision. Averaged ratio of correctly predicted labels for each instance,
following the definition by Charte and Charte: https: / /journal.r-project.org / archive / 2015 - 2 / charte-charte.pdf.
Fractions where the denominator becomes 0 are ignored in the average calculation.",
fun = function(task, model, pred, feats, extra.args) {
measureMultilabelPPV(
getPredictionTruth.PredictionMultilabel(pred),
getPredictionResponse.PredictionMultilabel(pred))
}
)
#' @export measureMultilabelPPV
#' @rdname measures
measureMultilabelPPV = function(truth, response) {
numerator = rowSums(truth & response)
denominator = rowSums(response)
mean(numerator / denominator, na.rm = TRUE)
}
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
multilabel.tpr = makeMeasure(
id = "multilabel.tpr", minimize = FALSE, best = 1, worst = 0,
properties = c("multilabel", "req.pred", "req.truth"),
name = "TPR (multilabel)",
note = "Also called recall. Averaged proportion of predicted labels which are relevant for each instance,
following the definition by Charte and Charte: https: / /journal.r-project.org / archive / 2015 - 2 / charte-charte.pdf.
Fractions where the denominator becomes 0 are ignored in the average calculation.",
fun = function(task, model, pred, feats, extra.args) {
measureMultilabelTPR(
getPredictionTruth.PredictionMultilabel(pred),
getPredictionResponse.PredictionMultilabel(pred))
}
)
#' @export measureMultilabelTPR
#' @rdname measures
measureMultilabelTPR = function(truth, response) {
numerator = rowSums(truth & response)
denominator = rowSums(truth)
mean(numerator / denominator, na.rm = TRUE)
}
###############################################################################
### survival ###
###############################################################################
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
cindex = makeMeasure(
id = "cindex", minimize = FALSE, best = 1, worst = 0,
properties = c("surv", "req.pred", "req.truth"),
name = "Harrell's Concordance index",
note = "Fraction of all pairs of subjects whose predicted survival times are correctly ordered among all subjects that can actually be ordered. In other words, it is the probability of concordance between the predicted and the observed survival.",
fun = function(task, model, pred, feats, extra.args) {
requirePackages("_Hmisc")
y = getPredictionResponse(pred)
if (anyMissing(y)) {
return(NA_real_)
}
s = getPredictionTruth(pred)
Hmisc::rcorr.cens(-1 * y, s)[["C Index"]]
}
)
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
#' @references
#' H. Uno et al.
#' *On the C-statistics for Evaluating Overall Adequacy of Risk Prediction Procedures with Censored Survival Data*
#' Statistics in medicine. 2011;30(10):1105-1117. \doi{10.1002/sim.4154}.
cindex.uno = makeMeasure(
id = "cindex.uno", minimize = FALSE, best = 1, worst = 0,
properties = c("surv", "req.pred", "req.truth", "req.model", "req.task"),
name = "Uno's Concordance index",
note = "Fraction of all pairs of subjects whose predicted survival times are correctly ordered among all subjects that can actually be ordered. In other words, it is the probability of concordance between the predicted and the observed survival. Corrected by weighting with IPCW as suggested by Uno. Implemented in survAUC::UnoC.",
fun = function(task, model, pred, feats, extra.args) {
requirePackages("_survAUC")
y = getPredictionResponse(pred)
if (anyMissing(y)) {
return(NA_real_)
}
surv.train = getTaskTargets(task, recode.target = "surv")[model$subset]
max.time = assertNumber(extra.args$max.time, null.ok = TRUE) %??% max(getTaskTargets(task)[, 1L])
survAUC::UnoC(Surv.rsp = surv.train, Surv.rsp.new = getPredictionTruth(pred), time = max.time, lpnew = y)
},
extra.args = list(max.time = NULL)
)
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
#' @references
#' H. Uno et al.
#' *Evaluating Prediction Rules for T-Year Survivors with Censored Regression Models*
#' Journal of the American Statistical Association 102, no. 478 (2007): 527-37.
iauc.uno = makeMeasure(
id = "iauc.uno", minimize = FALSE, best = 1, worst = 0,
properties = c("surv", "req.pred", "req.truth", "req.model", "req.task"),
name = "Uno's estimator of cumulative AUC for right censored time-to-event data",
note = "To set an upper time limit, set argument max.time (defaults to max time in complete task). Implemented in survAUC::AUC.uno.",
fun = function(task, model, pred, feats, extra.args) {
requirePackages("_survAUC")
max.time = assertNumber(extra.args$max.time, null.ok = TRUE) %??% max(getTaskTargets(task)[, 1L])
times = seq(from = 0, to = max.time, length.out = extra.args$resolution)
surv.train = getTaskTargets(task, recode.target = "surv")[model$subset]
y = getPredictionResponse(pred)
if (anyMissing(y)) {
return(NA_real_)
}
survAUC::AUC.uno(Surv.rsp = surv.train, Surv.rsp.new = getPredictionTruth(pred), times = times, lpnew = y)$iauc
},
extra.args = list(max.time = NULL, resolution = 1000L)
)
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
ibrier = makeMeasure(
id = "ibrier", minimize = TRUE, best = 0, worst = 1,
properties = c("surv", "req.truth", "req.model", "req.task"),
name = "Integrated brier score using Kaplan-Meier estimator for weighting",
note = "Only works for methods for which probabilities are provided via pec::predictSurvProb. Currently these are only coxph and randomForestSRC. To set an upper time limit, set argument max.time (defaults to max time in test data). Implemented in pec::pec",
fun = function(task, model, pred, feats, extra.args) {
requirePackages(c("survival", "pec"))
targets = getTaskTargets(task)
tn = getTaskTargetNames(task)
f = as.formula(sprintf("Surv(%s, %s) ~ 1", tn[1L], tn[2L]))
newdata = getTaskData(task)[model$subset, ]
max.time = extra.args$max.time %??% max(newdata[[tn[1L]]])
grid = seq(0, max.time, length.out = extra.args$resolution)
probs = predictSurvProb(getLearnerModel(model, more.unwrap = TRUE), newdata = newdata, times = grid)
perror = pec(probs, f,
data = newdata[, tn, with = FALSE], times = grid, exact = FALSE, exactness = 99L,
maxtime = max.time, verbose = FALSE, reference = FALSE)
crps(perror, times = max.time)[[1]]
},
extra.args = list(max.time = NULL, resolution = 1000L)
)
###############################################################################
### cost-sensitive ###
###############################################################################
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
meancosts = makeMeasure(
id = "meancosts", minimize = TRUE, best = 0, worst = Inf,
properties = c("costsens", "req.pred", "req.task"),
name = "Mean costs of the predicted choices",
note = "Defined as: mean(y), where y is the vector of costs for the predicted classes.",
fun = function(task, model, pred, feats, extra.args) {
classes = as.character(pred$data$response)
ids = pred$data$id
costs = getTaskCosts(task)
y = mapply(function(id, cl) {
costs[id, cl]
}, ids, classes, SIMPLIFY = TRUE, USE.NAMES = FALSE)
mean(y)
}
)
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
mcp = makeMeasure(
id = "mcp", minimize = TRUE, best = 0, worst = Inf,
properties = c("costsens", "req.pred", "req.task"),
name = "Misclassification penalty",
note = "Average difference between costs of oracle and model prediction.",
fun = function(task, model, pred, feats, extra.args) {
mc = meancosts$fun(task, NULL, pred, NULL, extra.args)
oc = mean(apply(getTaskCosts(task), 1L, min))
mc - oc
}
)
###############################################################################
### clustering ###
###############################################################################
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
db = makeMeasure(
id = "db", minimize = TRUE, best = 0, worst = Inf,
properties = c("cluster", "req.pred", "req.feats"),
name = "Davies-Bouldin cluster separation measure",
note = "Ratio of the within cluster scatter, to the between cluster separation, averaged over the clusters. See `?clusterSim::index.DB`.",
fun = function(task, model, pred, feats, extra.args) {
if (length(unique(pred$data$response)) > 1L) {
requirePackages("clusterSim", default.method = "load")
r = as.integer(as.factor(pred$data$response))
clusterSim::index.DB(feats, r)$DB
} else {
NA
}
}
)
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
G1 = makeMeasure(
id = "G1", minimize = FALSE, best = Inf, worst = 0, # nolint
properties = c("cluster", "req.pred", "req.feats"),
name = "Calinski-Harabasz pseudo F statistic",
note = "Defined as ratio of between-cluster variance to within cluster variance. See `?clusterSim::index.G1`.",
fun = function(task, model, pred, feats, extra.args) {
requirePackages("clusterSim", default.method = "load")
r = as.integer(as.factor(pred$data$response))
clusterSim::index.G1(feats, r)
}
)
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
G2 = makeMeasure(
id = "G2", minimize = FALSE, best = 1, worst = 0, # nolint
properties = c("cluster", "req.pred", "req.feats"),
name = "Baker and Hubert adaptation of Goodman-Kruskal's gamma statistic",
note = "Defined as: (number of concordant comparisons - number of discordant comparisons) / (number of concordant comparisons + number of discordant comparisons). See `?clusterSim::index.G2`.",
fun = function(task, model, pred, feats, extra.args) {
requirePackages("clusterSim", default.method = "load")
r = as.integer(as.factor(pred$data$response))
clusterSim::index.G2(clusterSim::dist.GDM(feats), r)
}
)
#' @export
#' @format NULL
#' @usage NULL
#' @rdname measures
silhouette = makeMeasure(
id = "silhouette", minimize = FALSE, best = Inf, worst = 0,
properties = c("cluster", "req.pred", "req.feats"),
name = "Rousseeuw's silhouette internal cluster quality index",
note = "Silhouette value of an observation is a measure of how similar an object is to its own cluster compared to other clusters. The measure is calculated as the average of all silhouette values. See `?clusterSim::index.S`.",
fun = function(task, model, pred, feats, extra.args) {
requirePackages("clusterSim", default.method = "load")
r = as.integer(as.factor(pred$data$response))
clusterSim::index.S(clusterSim::dist.GDM(feats), r)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.