#' Parabolic-EM Method for Accelerating Slowly-Convergent Fixed-Point Iterations
#'
#' Using parabolic-EM method Berlinet (2009) to accelerate general fixed-point iteration problems.
#'
#' @param par Vector for initial parameters
#' @param fixptfn Fixed point updating function
#' @param objfn Objective function
#' @param control A list containing parameters controlling the algorithm
#' @param ... Other arguments required by \code{fixptfn} and \code{objfn}
#'
#' @details The task it to \strong{minimize} \code{objfn}. Default values of \code{control} are: \code{warmup=5, h=0.1, a=1.5, maxtry=Inf, version="geometric", objfn.inc=0, projection=function(x) x, tol=1e-7, maxiter=2000, convtype="parameter", par.track=FALSE, conv.spec=NULL}.
#' \describe{
#' \item{warmup}{An integer variable indicating the number of \code{fixptfn} to be evaluated before starting this algorithm. Default is 5.}
#' \item{a}{A positive real number in the line search of geometric method. Default is 1.5.}
#' \item{h}{A positive real number indicating the step size in the line search step. Default is 0.1.}
#' \item{maxtry}{An integer variable indicating maximum number of try when searching for optimal step length in ever iteration. Default is Inf.}
#' \item{version}{A string indicating the method used in searching the step length \eqn{t}. \eqn{t = 1 + h \times a^i} for "geometric" and \eqn{t = 1 + i \times h} for "arithmetic". Default is "geometric".}
#' \item{projection}{A function projecting the parameter after each iteration. Default is identity function \eqn{f(x) = x}.}
#' \item{objfn.inc}{A non-negative scalar that dictates the degree of non-montonicity. Default is 0. Set objfn.inc = 0 to obtain monotone convergence. Setting objfn.inc = Inf gives a non-monotone scheme. In-between values result in partially-monotone convergence.}
#' \item{tol}{A small, positive scalar that determines when iterations should be terminated, see \code{convtype} for details. Default is \code{1e-7}}
#' \item{maxiter}{An integer denoting the maximum limit on the number of evaluations of \code{fixptfn}. Default is 2000.}
#' \item{convtype}{A string indicating the convergence criteria.
#' If it is "parameter", the algorithm will termenate when L2 norm of parameters difference \eqn{x_{new} - x_{old} < tol}.
#' If it is "objfn", the algorithm will terminate when the absolute difference of objective function \eqn{|L_{new} - L_{old}| < tol}.
#' If it is "user" or \code{conv.spec} is not \code{NULL}. Then the convergence is guided by the user defined function \code{conv.spec}.
#' Default is "parameter".}
#' \item{par.track}{An bool value indicating whether to track parameters along the algorithm. \code{TRUE} for tracking and \code{FALSE} for not. Default is \code{FALSE}}
#' \item{conv.spec}{A function for user specified convergence criteria. When using "parameter" or "objfn" option in \code{convtype}, this should be \code{NULL}.
#' The function should have the form \code{f(old_parameter, new_parameter, old_objective, new_objective, tolerance)} and return 1 if convergent, 0 if not.
#' Defalut is \code{NULL}.}
#' }
#'
#' @return A list of results
#' \item{par}{Parameter values, x* that are the fixed-point of fixptfn F such that x*=F(x*) if convergence is successful.}
#' \item{value.objfn}{The objective function value at termination.}
#' \item{fpevals}{Number of times the fixed-point function \code{fixptfn} was evaluated.}
#' \item{objfevals}{Number of times the objective function \code{objfn} was evaluated.}
#' \item{iter}{Numbers of iteration used at termination. (for different algorithms, multiple fixed point iteration might be evaluated in one iteration)}
#' \item{convergence}{An integer code indicating whether the algorithm converges. 1 for convergence and 0 denote failure.}
#' \item{objfn.track}{An array tracking objective function values along the algorithm}
#' \item{par.track}{A matrix tracking parameters along the algorithm, where each row is an array of parameters at some iteration. If not tracking paramters, this will be \code{NULL}}
#'
#' @references Berlinet A, Roland C (2009). Parabolic acceleration of the EM algorithm. Statistics and Computing, 19(1): 35–47.
#'
#' @examples
#' \dontrun{
#' set.seed(54321)
#' prob = lasso_task(lam=1)
#' parabolic_em(prob$initfn(), prob$fixptfn, prob$objfn, X=prob$X, y=prob$y)
#' }
#'
#' @export parabolic_em
parabolic_em = function(par, fixptfn, objfn, ..., control=list()){
# fixptfn should return feasible par and no need for projection
# minimizing task
control.default <- list(
convtype="parameter", tol=1.0e-07,
maxiter=2000, par.track=FALSE,
projection=function(x) x,
warmup=5, h=0.1, a=1.5, maxtry=Inf,
version="geometric", objfn.inc=0,
conv.spec=NULL
)
control.sub = control[names(control) %in% names(control.default)]
ctrl = modifyList(control.default, control.sub)
convergence = TRUE
fpevals = 0
objfevals = 0
objfn.track = c()
par.track = c(par)
convtype=ctrl$convtype
convf <- control$conv.spec
if(!is.null(convf)) convtype="user"
# warm up
for(i in 1:ctrl$warmup){
par = fixptfn(par, ...)
fpevals = fpevals + 1
}
if (ctrl$par.track) par.track = rbind(par.track, par)
# set up
p0 = par
p1 = fixptfn(p0, ...)
p2 = fixptfn(p1, ...)
fpevals = fpevals + 2
L2 = try(-objfn(p2, ...), silent=TRUE)
objfevals = objfevals + 1
objfn.track = c(objfn.track, -L2)
i = 1; it = 0
while(fpevals <= ctrl$maxiter){
p2old = p2; l2old = L2
if(ctrl$version=="geometric") {
t <- 1 + ctrl$a^(i-1) * ctrl$h
} else if(ctrl$version=="arithmetic") {
t <- 1 + i * ctrl$h
} else {
stop("for pem, version must be one of c('geometric','arithmetic')")
}
p_pem = ctrl$projection( (1-t)^2*p0 + 2*t*(1-t)*p1 + t^2*p2 )
Lpem = try(-objfn(p_pem, ...), silent=TRUE)
objfevals = objfevals + 1
if(inherits(Lpem, "try-error") | is.nan(Lpem) | Lpem <= L2) {
p0 <- p2
p1 <- fixptfn(p0, ...)
p2 <- fixptfn(p1, ...)
fpevals <- fpevals + 2
} else {
times = 0
while(Lpem + ctrl$objfn.inc > L2 & times < ctrl$maxtry){
pold = p_pem
L2 = Lpem
i = i + 1
if(ctrl$version=="geometric") {
t <- 1 + ctrl$a^(i-1) * ctrl$h
} else{
t <- 1 + i * ctrl$h
}
p_pem = ctrl$projection( (1-t)^2*p0 + 2*t*(1-t)*p1 + t^2*p2 )
Lpem = try(-objfn(p_pem, ...), silent=TRUE)
objfevals = objfevals + 1
times = times + 1
}
p0 = p1
p1 = p2
p2 = fixptfn(fixptfn(pold, ...), ...)
fpevals <- fpevals + 2
}
L2 = try(-objfn(p2, ...), silent=TRUE)
objfevals = objfevals + 1
objfn.track = c(objfn.track, -L2)
if(convtype == "objfn" & abs(L2 - l2old) < ctrl$tol)
break
if(convtype == "parameter" & sqrt(crossprod(p2 - p2old)) < ctrl$tol)
break
if(convtype == "user")
if (convf(p2old, p2, -l2old, -L2, ctrl$tol))
break
if (ctrl$par.track) par.track = rbind(par.track, p2)
it = it + 1
}
rownames(par.track) = NULL
if(fpevals > ctrl$maxiter){
convergence = FALSE
# warning("Algorithm did not converge")
}
list(par = c(p2),
value.objfn = -L2,
iter = it,
fpevals = fpevals,
objfevals = objfevals,
convergence = convergence,
objfn.track = objfn.track,
par.track = par.track)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.