#' @title Estimate A/B compartments from ATAC-seq data
#'
#' @description
#' \code{getATACABsignal} returns estimated A/B compartments from ATAC-seq data.
#'
#' @param obj Input SummarizedExperiment object
#' @param res Compartment resolution in bp
#' @param parallel Whether to run samples in parallel
#' @param chr What chromosome to work on (leave as NULL to run on all chromosomes)
#' @param targets Samples/cells to shrink towards
#' @param cores How many cores to use when running samples in parallel
#' @param bootstrap Whether we should perform bootstrapping of inferred compartments
#' @param num.bootstraps How many bootstraps to run
#' @param genome What genome to work on ("hg19", "hg38", "mm9", "mm10")
#' @param other Another arbitrary genome to compute compartments on
#' @param group Whether to treat this as a group set of samples
#' @param boot.parallel Whether to run the bootstrapping in parallel
#' @param boot.cores How many cores to use for the bootstrapping
#'
#' @return A RaggedExperiment of inferred compartments
#' @import SummarizedExperiment
#' @import RaggedExperiment
#' @importFrom parallel mclapply
#' @importFrom methods as
#' @export
#'
#' @aliases getRNAABsignal
#'
#' @examples
#' if (requireNamespace("csaw", quietly = TRUE)) {
#' data("k562_scatac_chr14", package = "compartmap")
#' atac_compartments <- getATACABsignal(
#' k562_scatac_chr14,
#' parallel = FALSE,
#' chr = "chr14",
#' bootstrap = FALSE,
#' genome = "hg19",
#' group = TRUE
#' )
#' }
getATACABsignal <- function(
obj,
res = 1e6,
parallel = FALSE,
chr = NULL,
targets = NULL,
cores = 2,
bootstrap = TRUE,
num.bootstraps = 100,
genome = c("hg19", "hg38", "mm9", "mm10"),
other = NULL,
group = FALSE,
boot.parallel = FALSE,
boot.cores = 2
) {
verifyCoords(obj)
# gather the chromosomes we are working on
if (is.null(chr)) {
message("Assuming we want to process all chromosomes.")
# get what chromosomes we want
chr <- getChrs(obj)
}
# get the column names
if (is.null(colnames(obj))) stop("colnames needs to be sample names.")
columns <- colnames(obj)
names(columns) <- columns
# precompute global means
prior.means <- getGlobalMeans(obj = obj, targets = targets, assay = "atac")
if (bootstrap) {
message("Pre-computing the bootstrap global means.")
bmeans <- precomputeBootstrapMeans(
obj = obj,
targets = targets,
num.bootstraps = num.bootstraps,
assay = "atac",
parallel = parallel,
num.cores = cores
)
}
# initialize global means
# gmeans <- getGlobalMeans(obj, targets = targets, assay = "atac")
if (group) {
atac.compartments.list <- mclapply(chr, function(c) {
atacCompartments(
obj,
obj,
res = res,
chr = c,
targets = targets,
genome = genome,
bootstrap = bootstrap,
num.bootstraps = num.bootstraps,
prior.means = prior.means,
parallel = boot.parallel,
cores = boot.cores,
group = group,
bootstrap.means = bmeans
)
}, mc.cores = ifelse(parallel, cores, 1))
atac.compartments <- sort(unlist(as(atac.compartments.list, "GRangesList")))
} else {
atac.compartments <- mclapply(columns, function(s) {
obj.sub <- obj[, s]
message("Working on ", s)
atac.compartments.list <- lapply(chr, function(c) {
atacCompartments(
obj.sub,
obj,
res = res,
chr = c,
targets = targets,
genome = genome,
bootstrap = bootstrap,
prior.means = prior.means,
num.bootstraps = num.bootstraps,
parallel = boot.parallel,
cores = boot.cores,
group = group,
bootstrap.means = bmeans
)
})
sort(unlist(as(atac.compartments.list, "GRangesList")))
}, mc.cores = ifelse(parallel, cores, 1))
}
# if group-level treat a little differently
if (group) {
return(atac.compartments)
}
# convert to GRangesList
atac.compartments <- as(atac.compartments, "CompressedGRangesList")
# return as a RaggedExperiment
return(RaggedExperiment(atac.compartments, colData = colData(obj)))
}
# worker function
# this is the main analysis function for computing compartments from atacs
atacCompartments <- function(
obj,
original.obj,
res = 1e6,
chr = NULL,
targets = NULL,
genome = c("hg19", "hg38", "mm9", "mm10"),
prior.means = NULL,
bootstrap = TRUE,
num.bootstraps = 1000,
parallel = FALSE,
cores = 2,
group = group,
bootstrap.means = NULL
) {
verifySE(obj)
# what genome do we have
genome <- match.arg(genome)
# set the parallel back-end core number
if (parallel) options(mc.cores = cores)
# update
message("Computing compartments for ", chr)
obj <- keepSeqlevels(obj, chr, pruning.mode = "coarse")
original.obj <- keepSeqlevels(original.obj, chr, pruning.mode = "coarse")
# take care of the global means
if (!is.null(prior.means)) {
# this assumes that we've alread computed the global means
pmeans <- as(prior.means, "GRanges")
pmeans <- keepSeqlevels(pmeans, chr, pruning.mode = "coarse")
# go back to a matrix
prior.means <- as(pmeans, "matrix")
colnames(prior.means) <- "globalMean"
}
# get the shrunken bins
obj.bins <- shrinkBins(
obj,
original.obj,
prior.means = prior.means,
chr = chr,
res = res,
targets = targets,
assay = "atac",
genome = genome,
jse = TRUE
)
# compute correlations
obj.cor <- getCorMatrix(obj.bins, squeeze = !group)
if (any(is.na(obj.cor$binmat.cor))) {
obj.cor$gr$pc <- matrix(rep(NA, nrow(obj.cor$binmat.cor)))
obj.svd <- obj.cor$gr
} else {
# compute SVD of correlation matrix
obj.svd <- getABSignal(obj.cor, assay = "atac")
}
if (isFALSE(bootstrap)) {
return(obj.svd)
}
# bootstrap the estimates
# always compute confidence intervals too
# take care of the global means
if (bootstrap) {
# this assumes that we've alread computed the global means
bmeans <- as(bootstrap.means, "GRanges")
bmeans <- keepSeqlevels(bmeans, chr, pruning.mode = "coarse")
# go back to a matrix
bmeans <- as(bmeans, "matrix")
colnames(bmeans) <- rep("globalMean", ncol(bmeans))
}
obj.bootstrap <- bootstrapCompartments(
obj,
original.obj,
bootstrap.samples = num.bootstraps,
chr = chr,
assay = "atac",
parallel = parallel,
cores = cores,
targets = targets,
res = res,
genome = genome,
q = 0.95,
svd = obj.svd,
group = group,
bootstrap.means = bmeans
)
# combine and return
return(obj.bootstrap)
}
#' @describeIn getATACABsignal Alias for getATACABsignal
#'
getRNAABsignal <- getATACABsignal
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.