View source: R/BIOMOD_EnsembleForecasting.R
| BIOMOD_EnsembleForecasting | R Documentation |
This function allows to project ensemble models built with the
BIOMOD_EnsembleModeling function onto new environmental data
(which can represent new areas, resolution or time scales for example).
BIOMOD_EnsembleForecasting(
bm.em,
bm.proj = NULL,
proj.name = NULL,
new.env = NULL,
new.env.xy = NULL,
models.chosen = "all",
metric.binary = NULL,
metric.filter = NULL,
na.rm = TRUE,
nb.cpu = 1,
...
)
bm.em |
a |
bm.proj |
a |
proj.name |
(optional, default |
new.env |
(optional, default |
new.env.xy |
(optional, default |
models.chosen |
a |
metric.binary |
(optional, default |
metric.filter |
(optional, default |
na.rm |
(optional, default |
nb.cpu |
(optional, default |
... |
(optional, see Details) |
... can take the following values :
(optional, default 0) :
an integer value corresponding to the number of digits of the predictions
(optional, default TRUE) :
a logical value defining whether 0 - 1 probabilities are to be converted to
0 - 1000 scale to save memory on backup
(optional, default TRUE) :
a logical value defining whether all projections are to be kept loaded at once in
memory, or only links pointing to hard drive are to be returned
(optional, default TRUE) :
a logical value defining whether all projections are to be saved as one
SpatRaster object or several SpatRaster
files (the default if projections are too heavy to be all loaded at once in memory)
(optional, default .RData or .tif) :
a character value corresponding to the projections saving format on hard drive, must
be either .grd, .img, .tif or .RData (the default if
new.env is given as matrix or data.frame)
(optional, default TRUE) :
a logical or a character value defining whether and how objects should be
compressed when saved on hard drive. Must be either TRUE, FALSE, gzip
(for Windows OS) or xz (for other OS)
A BIOMOD.projection.out object containing models projections, or links to saved
outputs.
Models projections are stored out of R (for memory storage reasons) in
proj.name folder created in the current working directory :
the output is a data.frame if new.env is a matrix or a
data.frame
it is a SpatRaster if new.env is a
SpatRaster (or several SpatRaster
objects, if new.env is too large)
raw projections, as well as binary and filtered projections (if asked), are saved in
the proj.name folder
Wilfried Thuiller, Damien Georges, Robin Engler
BIOMOD_FormatingData, bm_ModelingOptions,
BIOMOD_Modeling, BIOMOD_EnsembleModeling,
BIOMOD_RangeSize
Other Main functions:
BIOMOD_EnsembleModeling(),
BIOMOD_FormatingData(),
BIOMOD_LoadModels(),
BIOMOD_Modeling(),
BIOMOD_Projection(),
BIOMOD_RangeSize()
library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)
# Select the name of the studied species
myRespName <- 'GuloGulo'
# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])
# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)
# --------------------------------------------------------------- #
file.out <- paste0(myRespName, "/", myRespName, ".AllModels.models.out")
if (file.exists(file.out)) {
myBiomodModelOut <- get(load(file.out))
} else {
# Format Data with true absences
myBiomodData <- BIOMOD_FormatingData(resp.name = myRespName,
resp.var = myResp,
resp.xy = myRespXY,
expl.var = myExpl)
# Model single models
myBiomodModelOut <- BIOMOD_Modeling(bm.format = myBiomodData,
modeling.id = 'AllModels',
models = c('RF', 'GLM'),
CV.strategy = 'random',
CV.nb.rep = 2,
CV.perc = 0.8,
OPT.strategy = 'bigboss',
metric.eval = c('TSS', 'AUCroc'),
var.import = 3,
seed.val = 42)
}
file.proj <- paste0(myRespName, "/proj_Current/", myRespName, ".Current.projection.out")
if (file.exists(file.proj)) {
myBiomodProj <- get(load(file.proj))
} else {
# Project single models
myBiomodProj <- BIOMOD_Projection(bm.mod = myBiomodModelOut,
proj.name = 'Current',
new.env = myExpl,
models.chosen = 'all',
build.clamping.mask = TRUE)
}
file.EM <- paste0(myRespName, "/", myRespName, ".AllModels.ensemble.models.out")
if (file.exists(file.EM)) {
myBiomodEM <- get(load(file.EM))
} else {
# Model ensemble models
myBiomodEM <- BIOMOD_EnsembleModeling(bm.mod = myBiomodModelOut,
models.chosen = 'all',
em.by = 'all',
em.algo = c('EMmean', 'EMca'),
metric.select = c('TSS'),
metric.select.thresh = c(0.7),
metric.eval = c('TSS', 'AUCroc'),
var.import = 3,
seed.val = 42)
}
# --------------------------------------------------------------- #
# Project ensemble models (from single projections)
myBiomodEMProj <- BIOMOD_EnsembleForecasting(bm.em = myBiomodEM,
bm.proj = myBiomodProj,
models.chosen = 'all',
metric.binary = 'all',
metric.filter = 'all')
# Project ensemble models (building single projections)
myBiomodEMProj <- BIOMOD_EnsembleForecasting(bm.em = myBiomodEM,
proj.name = 'CurrentEM',
new.env = myExpl,
models.chosen = 'all',
metric.binary = 'all',
metric.filter = 'all')
myBiomodEMProj
plot(myBiomodEMProj)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.