View source: R/bm_RunModelsLoop.R
| bm_RunModelsLoop | R Documentation |
This internal biomod2 function allows the user to compute all single
species distribution models (asked by the BIOMOD_Modeling function).
bm_RunModelsLoop(
bm.format,
modeling.id,
models,
models.pa,
calib.lines,
bm.options,
metric.eval,
var.import,
weights,
scale.models = FALSE,
nb.cpu = 1,
seed.val = NULL,
do.progress = TRUE
)
bm_RunModel(
model,
run.name,
dir.name = ".",
modeling.id = "",
Data,
bm.options,
calib.lines.vec,
eval.data = NULL,
metric.eval = c("AUCroc", "TSS", "KAPPA"),
var.import = 0,
weights.vec,
scale.models = FALSE,
nb.cpu = 1,
seed.val = NULL,
do.progress = TRUE
)
bm.format |
a |
modeling.id |
a |
models |
a |
models.pa |
(optional, default |
calib.lines |
a |
bm.options |
a |
metric.eval |
a |
var.import |
(optional, default |
weights |
a |
scale.models |
(optional, default |
nb.cpu |
(optional, default |
seed.val |
(optional, default |
do.progress |
(optional, default |
model |
a |
run.name |
a |
dir.name |
(optional, default |
Data |
a |
calib.lines.vec |
a |
eval.data |
(optional, default |
weights.vec |
a |
A list containing for each model a list containing the following elements :
model : the name of correctly computed model
calib.failure : the name of incorrectly computed model
pred : the prediction outputs for calibration data
pred.eval : the prediction outputs for evaluation data
evaluation : the evaluation outputs returned by the
bm_FindOptimStat function
var.import : the mean of variables importance returned by the
bm_VariablesImportance function
Damien Georges
rpart, prune, gbm,
nnet, earth,
fda, mars, maxnet,
randomForest, xgboost,
bm_ModelingOptions, BIOMOD_Modeling,
bm_MakeFormula, bm_SampleFactorLevels,
bm_FindOptimStat, bm_VariablesImportance
Other Secondary functions:
bm_BinaryTransformation(),
bm_CrossValidation(),
bm_FindOptimStat(),
bm_MakeFormula(),
bm_ModelingOptions(),
bm_PlotEvalBoxplot(),
bm_PlotEvalMean(),
bm_PlotRangeSize(),
bm_PlotResponseCurves(),
bm_PlotVarImpBoxplot(),
bm_PseudoAbsences(),
bm_RangeSize(),
bm_SRE(),
bm_SampleBinaryVector(),
bm_SampleFactorLevels(),
bm_Tuning(),
bm_VariablesImportance()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.