View source: R/bm_PlotEvalBoxplot.R
| bm_PlotEvalBoxplot | R Documentation | 
This function represents boxplot of evaluation scores of species distribution 
models, from BIOMOD.models.out or BIOMOD.ensemble.models.out 
objects that can be obtained from BIOMOD_Modeling or 
BIOMOD_EnsembleModeling functions. Scores are represented according to 2 
grouping methods (see Details).
bm_PlotEvalBoxplot(
  bm.out,
  dataset = "calibration",
  group.by = c("algo", "run"),
  do.plot = TRUE,
  ...
)
bm.out | 
 a   | 
dataset | 
 a   | 
group.by | 
 a 2-length   | 
do.plot | 
 (optional, default   | 
... | 
 some additional arguments (see Details)  | 
... can take the following values :
main : a character corresponding to the graphic title
scales : a character corresponding to the scales argument of 
the facet_wrap function, must be either fixed, free_x, 
free_y or free
A list containing a data.frame with evaluation scores and the corresponding 
ggplot object representing them in boxplot.
Damien Georges, Maya Guéguen
BIOMOD.models.out, BIOMOD.ensemble.models.out, 
BIOMOD_Modeling, BIOMOD_EnsembleModeling, 
get_evaluations
Other Secondary functions: 
bm_BinaryTransformation(),
bm_CrossValidation(),
bm_FindOptimStat(),
bm_MakeFormula(),
bm_ModelingOptions(),
bm_PlotEvalMean(),
bm_PlotRangeSize(),
bm_PlotResponseCurves(),
bm_PlotVarImpBoxplot(),
bm_PseudoAbsences(),
bm_RangeSize(),
bm_RunModelsLoop(),
bm_SRE(),
bm_SampleBinaryVector(),
bm_SampleFactorLevels(),
bm_Tuning(),
bm_VariablesImportance()
Other Plot functions: 
bm_PlotEvalMean(),
bm_PlotRangeSize(),
bm_PlotResponseCurves(),
bm_PlotVarImpBoxplot()
library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)
# Select the name of the studied species
myRespName <- 'GuloGulo'
# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])
# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)
# ---------------------------------------------------------------
file.out <- paste0(myRespName, "/", myRespName, ".AllModels.models.out")
if (file.exists(file.out)) {
  myBiomodModelOut <- get(load(file.out))
} else {
  # Format Data with true absences
  myBiomodData <- BIOMOD_FormatingData(resp.name = myRespName,
                                       resp.var = myResp,
                                       resp.xy = myRespXY,
                                       expl.var = myExpl)
  # Model single models
  myBiomodModelOut <- BIOMOD_Modeling(bm.format = myBiomodData,
                                      modeling.id = 'AllModels',
                                      models = c('RF', 'GLM'),
                                      CV.strategy = 'random',
                                      CV.nb.rep = 2,
                                      CV.perc = 0.8,
                                      OPT.strategy = 'bigboss',
                                      metric.eval = c('TSS', 'ROC'),
                                      var.import = 3,
                                      seed.val = 42)
}
# ---------------------------------------------------------------
# Get evaluation scores
get_evaluations(myBiomodModelOut)
# Represent evaluation scores
bm_PlotEvalBoxplot(bm.out = myBiomodModelOut, group.by = c('algo', 'run'))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.