#' Mini-ensemble Analyzer
#'
#' @param trap_selected_date
#' @param trap_selected_conditions
#' @param mv2nm
#' @param nm2pn
#' @param color
#' @param file_type
#'
#' @return
#' @export
#'
#' @examples
shiny_mini_ensemble_analyzer <- function(trap_selected_date, trap_selected_conditions, mv2nm, nm2pn, color, file_type){
withProgress(message = 'Analyzing Mini Ensemble', value = 0, max = 1, min = 0, {
incProgress(amount = .01, detail = "Reading Data")
#setwd(parent_dir)
observation_folders <- list_dir(trap_selected_date) %>%
dplyr::filter(str_detect(name, "obs")) %>%
pull(name)
grouped4r_files <- list_dir(trap_selected_date, recursive = TRUE) %>%
dplyr::filter(str_detect(name, "grouped")) %>%
pull(path)
directions <- list_dir(trap_selected_date) %>%
dplyr::filter(name == "directions.csv") %>%
pull(path)
if(file_type == "csv"){
read_directions <- suppressMessages(read_csv(directions)) %>%
mutate(folder = observation_folders,
grouped_file = grouped4r_files,
condition = trap_selected_conditions)%>%
filter(include == "yes")
} else {
read_directions <- suppressMessages(read_csv(directions)) %>%
mutate(folder = observation_folders,
grouped_file = grouped4r_files,
condition = trap_selected_conditions) %>%
filter(include == "yes")
}
read_directions$baseline_start_sec <- as.numeric(read_directions$baseline_start_sec)
read_directions$baseline_start_sec <- read_directions$baseline_start_sec*5000
read_directions$baseline_stop_sec <- as.numeric(read_directions$baseline_stop_sec)
read_directions$baseline_stop_sec <- read_directions$baseline_stop_sec*5000
#create results folders for output on dropbox
results_folder <- paste0(trap_selected_date, "/results")
dir.create(results_folder)
events_folder <- paste0(trap_selected_date, "/results/events")
dir.create(events_folder)
plots_folder <- paste0(trap_selected_date, "/results/plots")
dir.create(plots_folder)
error_file <- file("error_log.txt", open = "a")
writeLines(paste0("Mini-ensemble anlaysis performed on ", Sys.time(), "\n"), error_file)
inc_prog_bar <- nrow(read_directions) * 4
report <- vector("list")
#start loop
for(folder in seq_along(read_directions$folder)){
tryCatch({
incProgress(1/inc_prog_bar, paste("Analyzing", read_directions$condition[[folder]], read_directions$folder[[folder]]))
report[[folder]] <- paste0("failed_to_initialize!_", read_directions$folder[[folder]])
#Load data and convert mV to nm
dat <- read_csv(read_directions$grouped_file[[folder]]) %>%
mutate(nm_converted = bead*mv2nm) %>%
dplyr::pull(nm_converted)
#PROCESS DATA
#centers data around 0 by either performing a QR decomposition or simply removing baseline mean from all points (i.e. constant detrend)
#both of these will center the mean around 0. It just depends if there needs to be long linear drift corrected or not
processed <- if(read_directions$detrend[[folder]] == "yes"){
break_pts <- seq(25000, length(dat), by = 25000)
pracma::detrend(dat, tt = "linear", bp = break_pts)
} else if(read_directions$detrend[[folder]] == "no"){
get_mean <- mean(dat[read_directions$baseline_start_sec[[folder]] : read_directions$baseline_stop_sec[[folder]]])
dat - get_mean
}
#build table for analysis
raw_data <- tibble(index = 1:nrow(processed),
trap = processed)
#calculate running mean
run_mean <- as.vector(rollmean(raw_data$trap, k = 50, align = "left"))
run_mean0 <- ifelse(run_mean < 0, 0, run_mean)
report[[folder]] <- paste0("failed_event_detection!_", read_directions$folder[[folder]])
#Determine if run_mean is in an event or baseline noise by using >8 as event threshold
on_off <- ifelse(run_mean > 8, 2, 1)
rle_object<- as_tibble(do.call("cbind", rle(on_off)))
#if starts in state2/event get rid of it
if(head(rle_object, 1)$values == 2){
rle_object %<>% slice(2:nrow(rle_object))
}
#find initial event start/stop
#If the rle_object's last row is in state 1, get rid of that last row. This needs to end in state 2 to capture the end of the last event
mini_rle_object <- if(tail(rle_object, 1)$values == 1){
slice(rle_object, -length(rle_object$values))
} else {
rle_object
}
split_data <- mini_rle_object %>%
dplyr::mutate(cumsum = cumsum(lengths)) %>%
dplyr::group_by(values) %>%
split(mini_rle_object$values)
#data is recombined in a state_1 column and a state_2
#the values in these columns represent the last data point in either state 1 or state 2
#So the range of values between the end of state 1 (or start of state 2) and the end of state 2 is the event duration
regroup_data <- bind_cols(state_1_end = split_data[[1]]$cumsum, state_2_end = split_data[[2]]$cumsum) %>%
mutate(event_duration_dp = state_2_end - state_1_end)
#filter out state 2s that are less than 10 ms (50 data points)
events <- regroup_data %>%
filter(event_duration_dp > 50)
scale_by_event_index <- data.frame(state_1_start = c(0, events$state_2_end[-length(events$state_2_end)] + 1),
state_2_end = events$state_2_end)
prior_noise_plus_event <- vector("list")
for(i in 1:nrow(scale_by_event_index)){
prior_noise_plus_event[[i]] <- raw_data$trap[scale_by_event_index$state_1_start[i]:scale_by_event_index$state_2_end[i]]
}
state_1_index <- data.frame(state_1_start = scale_by_event_index$state_1_start,
state_1_end = events$state_1_end)
state_1_means <- vector("list")
for(i in 1:nrow(state_1_index)){
state_1_means[[i]] <- mean(raw_data$trap[state_1_index$state_1_start[i]:state_1_index$state_1_end[i]])
}
rescaled_vectors <- vector("list")
for(i in 1:length(prior_noise_plus_event)){
rescaled_vectors[[i]] <- prior_noise_plus_event[[i]] - state_1_means[[i]]
}
##### FIND BETTER START OF EVENT#######
end_of_last_event <- max(length(events$state_2_end))
last_s1_start <- events$state_2_end[end_of_last_event]+ 1
end_raw <- length(raw_data$trap)
rescaled_raw_data <- tibble(trap = c(unlist(rescaled_vectors), raw_data$trap[last_s1_start : end_raw]),
index = seq(1, length(trap)))
report[[folder]] <- paste0("error_measureing_events!_", read_directions$folder[[folder]])
# dygraph_raw_data[[folder]] <- rescaled_raw_data$trap
run_mean_rescaled <- as.vector(rollmean(rescaled_raw_data$trap, k = 50, align = "left"))
run_mean_rescaled <- tibble(run_mean = run_mean_rescaled,
index = 1:length(run_mean_rescaled))
rescaled_events <- identify_mini_events(raw_data, run_mean_rescaled$run_mean)
##### FIND OFF TIMES #### ##
minus1 <- rescaled_events$state_1_end[-1]
minus2 <- rescaled_events$state_2_end[-length(rescaled_events$state_2_end)]
off_time_index <- bind_cols(state_1_start = minus2 + 1, state_1_end = minus1) %>%
mutate(off_time_dp = (state_1_end - state_1_start) +1,
off_time_sec = off_time_dp/5000,
off_time_ms = off_time_sec*1000)
###### FORCES #####
peak_displacement_df <- list()
for(i in 1:nrow(rescaled_events)){
temp_df <- run_mean_rescaled[(rescaled_events$state_1_end[i] + 1) : (rescaled_events$state_2_end[i]),]
find_event_peak <- max(temp_df$run_mean)
peak_displacement_df[[i]] <- temp_df[which(temp_df$run_mean == find_event_peak),]
}
peak_displacement_df %<>% bind_rows %>%
rename(displacement_nm = run_mean)%>%
mutate(converted_force = displacement_nm*nm2pn)
##### COMBINE ALL EVENT DATA ####
final_events <- rescaled_events %>%
mutate(off_time_prior_dp = c(NA, off_time_index$off_time_dp),
off_time_prior_sec = off_time_prior_dp/5000,
time_off_prior_ms = off_time_prior_sec*1000,
raw_event_duration_dp = state_2_end - state_1_end,
raw_event_duration_sec = raw_event_duration_dp/5000,
time_on_ms = raw_event_duration_sec * 1000,
displacement_nm = peak_displacement_df$displacement_nm,
conditions = read_directions$condition[[folder]],
observation = read_directions$folder[[folder]],
event_num = 1:nrow(rescaled_events),
force = peak_displacement_df$converted_force)%>%
dplyr::select(event_num, conditions, observation, time_on_ms, time_off_prior_ms, displacement_nm, force)
final_events_4_plot <- rescaled_events %>%
mutate(off_time_prior_dp = c(NA, off_time_index$off_time_dp),
off_time_prior_sec = off_time_prior_dp/5000,
time_off_prior_ms = off_time_prior_sec*1000,
raw_event_duration_dp = state_2_end - state_1_end,
raw_event_duration_sec = raw_event_duration_dp/5000,
time_on_ms = raw_event_duration_sec * 1000,
peak_nm = peak_displacement_df$displacement_nm,
conditions = read_directions$condition[[folder]],
observation = read_directions$folder[[folder]],
event_num = 1:nrow(rescaled_events),
force = peak_displacement_df$converted_force,
peak_nm_index = peak_displacement_df$index)%>%
rename(end_s1 = state_1_end,
end_s2 = state_2_end)
incProgress(detail = paste("Identified", nrow(final_events), "events in", length(dat)/5000, "seconds"))
write_csv(final_events, path = paste0(events_folder,
"/",
read_directions$condition[[folder]],
"_",
read_directions$folder[[folder]],
"_",
"mini_ensemble_events.csv"))
#drop_up_load(temp_final_events, path = events_folder)
#plot
# filter_final_events1 <- filter(final_events_4_plot, end_s2 < 20000)
#filter_final_events2 <- filter(final_events_4_plot, end_s2 > 20001 & end_s2 < 40000)
#filter_final_events3 <- filter(final_events_4_plot, end_s2 > max(final_events_4_plot$end_s2) - 40000 & end_s2 < max(final_events_4_plot$end_s2) - 20000)
#filter_final_events4 <- filter(final_events_4_plot, end_s2 > max(final_events_4_plot$end_s2) - 20000)
run_mean_rescaled0 <- ifelse(run_mean_rescaled$run_mean < 0 , 0, run_mean_rescaled$run_mean)
################################ MAKE DYGRAPH ####################################
incProgress(detail = "Making Dygraph")
report[[folder]] <- paste0("failed_to_render_dygraph!_", read_directions$folder[[folder]])
#save dygraph data
temp_dir <- chartr("\\", "/", paste0(tempdir(), "/", squysh_time(),"_", read_directions$condition[[folder]], "_", read_directions$folder[[folder]]))
dir.create(temp_dir)
rdata_temp_file <- tempfile(pattern = "rdata", tmpdir = temp_dir)
rdata_temp_file <- chartr("\\", "/", rdata_temp_file)
dygraph_master_list <- list(raw_data = rescaled_raw_data$trap,
run_mean = run_mean_rescaled0,
final_events = final_events_4_plot,
trap_selected_date = trap_selected_date)
save("dygraph_master_list", file = rdata_temp_file)
#make dygraph .R file
writeLines(c(
"#+ echo=FALSE",
paste0("rdata_temp_file <- ","'", rdata_temp_file, "'"),
paste0("run_mean_color <- ", "'",color, "'"),
"
#+ echo=FALSE, fig.width = 10, fig.height = 4
suppressPackageStartupMessages(library(tidyverse))
library(dygraphs)
library(rmarkdown)
load(rdata_temp_file)
d <- data.frame(index = 1:length(dygraph_master_list$run_mean),
raw = dygraph_master_list$raw_data[1:length(dygraph_master_list$run_mean)],
run = dygraph_master_list$run_mean,
thresh = rep(8, length(dygraph_master_list$run_mean)))
events <- dygraph_master_list$final_events
periods_df <- data.frame(start = events$end_s1,
stop = events$end_s2)
add_shades <- function(x, periods, ...){
for(p in 1:nrow(periods)){
x <- dyShading(x, from = periods$start[[p]], to = periods$stop[[p]], ...)
}
x
}
add_labels <- function(x, events, ...){
for(event in 1:nrow(events)){
x <- dyEvent(x, events$peak_nm_index[[event]], paste(events$time_on_ms[[event]], 'ms,', round(events$force[[event]], digits = 2), 'pN'), ...)
}
x
}
dygraph(d) %>%
dySeries('raw', color = 'gray30', strokeWidth = 2) %>%
dySeries('run', color = run_mean_color, strokeWidth = 2) %>%
dySeries('thresh', strokeWidth = 3, color = 'lightgrey') %>%
dyRangeSelector() %>%
add_shades(periods_df, color = 'lightpink') %>%
add_labels(events, labelLoc = 'bottom') %>%
dyAxis('x', drawGrid = FALSE) %>%
dyUnzoom()
"),
paste0(trap_selected_date,
'/results/plots/',
read_directions$condition[[folder]],
"_",
read_directions$folder[[folder]],
"_dygraph.R")
)
#render to HTML
rmarkdown::render(input = paste0(trap_selected_date,
'/results/plots/',
read_directions$condition[[folder]],
"_",
read_directions$folder[[folder]],
"_dygraph.R"),
envir = new.env())
# drop_upload(paste0(temp_dir,
# "/",
# read_directions$condition[[folder]],
# "_",
# read_directions$folder[[folder]],
# "_dygraph.html"),
# path = plots_folder)
report[[folder]] <- paste0("success!_", read_directions$folder[[folder]])
}, error=function(e){
writeLines(paste0("Analysis error in ",
read_directions$folder[[folder]],
" with error: ",
as.character(e)), error_file)
cat("ERROR :",conditionMessage(e), "\n")
})
}
close(error_file)
export_directions <- read_csv(directions) %>%
mutate(folder = observation_folders,
grouped_file = grouped4r_files)
success_report <- tibble(analysis_complete = unlist(report)) %>%
separate(analysis_complete, c("report", "folder"), sep = "!_") %>%
right_join(export_directions, by = "folder") %>%
replace_na(list(report = "user_excluded")) %>%
arrange(folder) %>%
dplyr::select(-starts_with("grouped_file"))
write_csv(success_report, path = paste0(trap_selected_date, "/directions.csv"))
#drop_delete(directions)
#drop_upload(success_report_path, path = trap_selected_date)
incProgress(1, detail = "Done!")
}) #close withProgress
# sendSweetAlert(session = session,
# title = "Mini-ensemble analysis complete",
# text = "Results saved to Box",
# type = "success")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.