#' This function reject all values greater than max and smaller than min in a data.frame
#'
#' @param DATA data.frame of timeseries
#' @param DATETIME_HEADER header of data corresponding to datetime
#' @param RANGE_DIR directory where support files are stored
#' @param RANGE_FILE name of filr where min/max thresholds are defined for each variable. Thi file is in RANGE_DIR
#' @param MAIL_DIR aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
#' @param MAIL_FILE_ALERT aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
#' @param STATION name of station
#' @param USE_FLAG true/false --> decide to use or not the station flags in range file
#' @param USE_RT_FLAG true/false --> decide to use or not the station flags in range file
#' @param DATETIME_FORMAT kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
#' @return A data.frame with all values in its physical range
#'
#' @export
#'
#' @examples
#' exclude_out_of_range(DATA = mydata, RANGE_DIR = RANGE_DIR, RANGE_FILE = "Range.csv")
#'
alert_range_notify = function(DATA,DATETIME_HEADER = "TIMESTAMP",DATETIME_FORMAT = "%Y-%m-%d %H:%M",RECORD_HEADER,
RANGE_DIR, RANGE_FILE,
MAIL_DIR, MAIL_FILE_ALERT,
STATION, USE_FLAG,USE_RT_FLAG){
######
# DATA = cbind(DATA,rep(1000, times = nrow(DATA)))
# # DATA = DATA[,-18]
# colnames(DATA)[ncol(DATA)] = "pippo"
######
options(scipen = 999)
range = read.csv(paste(RANGE_DIR, RANGE_FILE,sep = ""),stringsAsFactors = FALSE) # <- import table that contains for each variable the permissible range
oor_flag = read.csv(paste(MAIL_DIR, MAIL_FILE_ALERT,sep = ""),stringsAsFactors = FALSE)
range$Alert_min = as.numeric(range$Alert_min)
range$Alert_Max = as.numeric(range$Alert_Max)
# ATTENZIONE: Possibili problemi se i 2 file hanno lista variabili e nomi delle stazioni diverse (PER MODIFICHE MANUALI!!!)
if(!(STATION %in% colnames(range)) & !(STATION %in% colnames(oor_flag))){ # possibili solo F&F e T&T
void_vect = c(rep(NA, times = nrow(range)))
void_vect_oor = c(rep(NA, times = nrow(oor_flag)))
range = cbind(range,void_vect)
colnames(range)[ncol(range)] = STATION
oor_flag = cbind(oor_flag,void_vect_oor)
colnames(oor_flag)[ncol(oor_flag)] = STATION
w_col_data = which(range$Variable %in% colnames(DATA))
w_station = which(colnames(range) == STATION)
w_col_data_oor = which(oor_flag$Variable %in% colnames(DATA))
w_station_oor = which(colnames(oor_flag) == STATION)
range[w_col_data,w_station] = 1
oor_flag[w_col_data_oor,w_station_oor] = 1
}else{
w_col_data = which(range$Variable %in% colnames(DATA))
w_station = which(colnames(range) == STATION)
range[w_col_data,w_station][is.na(range[w_col_data,w_station])] = 1
range[-w_col_data,w_station] = NA
w_col_data_oor = which(oor_flag$Variable %in% colnames(DATA))
w_station_oor = which(colnames(oor_flag) == STATION)
oor_flag[w_col_data_oor,w_station_oor][is.na( oor_flag[w_col_data_oor,w_station_oor])] = 1
oor_flag[-w_col_data_oor,w_station_oor] = NA
}
# range = range[order(range$Variable),] # reorder range file based on variable
# oor_flag = oor_flag[order(oor_flag$Variable),]
new = DATA # define new dataframe called new that is a copy of DATA
# new = cbind(DATA, rep(100,times = nrow(DATA))) ####################################################################
# colnames(new)[ncol(new)] = "PIPPO" ####################################################################
new_status = new # create a dataframe with the same structure that DATA. Inside there is only 0. When data are out of range 0 is subsitute wiht -1 or 1
new_status[,-which(colnames(new_status) == DATETIME_HEADER )] = 0
# This loop checks if variables in result are in the range list.
# It could be a good index to see if there are issues in headers
to_add = c()
df_to_add = as.data.frame(matrix(ncol = ncol(range)))
colnames(df_to_add) = colnames(range)
to_add_oor = c()
df_to_add_oor = as.data.frame(matrix(ncol = ncol(oor_flag)))
colnames(df_to_add_oor) = colnames(oor_flag)
df_upper = as.data.frame(matrix(ncol = 5, nrow = 0))
colnames(df_upper) = c("Variable", "From", "To", "Hours", "Extreme_value")
df_lower = as.data.frame(matrix(ncol = 5, nrow = 0))
colnames(df_lower) = c("Variable", "From", "To", "Hours", "Extreme_value")
df_NA = as.data.frame(matrix(ncol = 5, nrow = 0))
colnames(df_NA) = c("Variable", "From", "To", "Hours", "Extreme_value")
for(k in 1:ncol(new)){
if((colnames(new)[k] %in% range$Variable) & (colnames(new)[k] %in% oor_flag$Variable)){
w = which(range$Variable == colnames(new)[k])
w2 = which(oor_flag$Variable == colnames(new)[k])
# range$Variable[w]
# oor_flag[w2,which(colnames(oor_flag)==STATION)]
lower_limit = range$Alert_min[w]
upper_limit = range$Alert_Max[w]
if(USE_FLAG == TRUE){
if(range[w,which(colnames(range) == STATION)] == 0 ){ # Check variables activated when manual range is 1 and automatic flag = 1
lower_limit = NA
upper_limit = NA
}
}
if(USE_RT_FLAG == TRUE){
if(oor_flag[w2,which(colnames(oor_flag)==STATION)] == 0 ){ # Check variables activated when manual range is 1 and automatic flag = 1
lower_limit = NA
upper_limit = NA
}
}
# NB. il controllo dei paramtetri avviene solo se sia il range file sia il out_of_range file abilita il controlle del parametro X (entrambi devono essere 1)
if(!is.na(lower_limit) & !is.na(upper_limit)) { # Exclude data without a range set
# ~ ~ ~ ~ data below lower limit ~ ~ ~ ~
w_low = which(new[,k] < lower_limit)
x = cumsum(c(1,diff(w_low)!=1))
sss = split(w_low,x)
if(length(sss[[1]]) >= 1){
for(s in 1:length(sss)){
# sss[[s]]
start_sss = as.POSIXct(new[ sss[[s]][1] ,which(colnames(new) == DATETIME_HEADER)],tz = "Etc/GMT-1")
end_sss = as.POSIXct( new[ sss[[s]][length(sss[[s]])] ,which(colnames(new) == DATETIME_HEADER)],tz = "Etc/GMT-1")
hour_diff = end_sss - start_sss
units(hour_diff) = "hours"
num_hour_diff = as.numeric(hour_diff)+0.25
df_lower_tmp = data.frame(colnames(new)[k],
format(start_sss,format = DATETIME_FORMAT),
format(end_sss,format = DATETIME_FORMAT),
as.numeric(num_hour_diff),
min(new[ sss[[s]] ,k],na.rm = T))
colnames(df_lower_tmp) = colnames(df_lower)
df_lower = rbind(df_lower,df_lower_tmp)
}
}
# else{
# df_lower_tmp = as.data.frame(matrix(ncol = 5, nrow = 0))
# colnames(df_lower_tmp) = c("Variable", "From", "To", "Hours", "Extreme_value")
# }
# ~ ~ ~ ~ data above upper limit ~ ~ ~ ~
w_high = which(new[,k] > upper_limit)
y = cumsum(c(1,diff(w_high)!=1))
ttt = split(w_high,y)
if(length(ttt[[1]]) >= 1){
for(t in 1:length(ttt)){
# ttt[[t]]
start_ttt = as.POSIXct(new[ ttt[[t]][1] ,which(colnames(new) == DATETIME_HEADER)],tz = "Etc/GMT-1")
end_ttt = as.POSIXct( new[ ttt[[t]][length(ttt[[t]])] ,which(colnames(new) == DATETIME_HEADER)],tz = "Etc/GMT-1")
hour_diff = end_ttt - start_ttt
units(hour_diff) = "hours"
num_hour_diff = as.numeric(hour_diff)+0.25
df_upper_tmp = data.frame(colnames(new)[k],
format(start_ttt,format = DATETIME_FORMAT),
format(end_ttt,format = DATETIME_FORMAT),
# as.character(start_ttt),
# as.character(end_ttt),
as.character(num_hour_diff),
max(new[ ttt[[t]] ,k],na.rm = T))
colnames(df_upper_tmp) = colnames(df_upper)
df_upper = rbind(df_upper,df_upper_tmp)
}
}
# else{
# df_upper_tmp = as.data.frame(matrix(ncol = 5, nrow = 0))
# colnames(df_upper_tmp) = c("Variable", "From", "To", "Hours", "Extreme_value")
# }
# ~ ~ ~ ~ data NA ~ ~ ~ ~
w_NA = which(is.na(new[,k]) & new[,which(colnames(new) == RECORD_HEADER)] != -1) # extract NaN data (exclude rows filled with missing date)
z = cumsum(c(1,diff(w_NA)!=1))
nnn = split(w_NA,z)
if(length(nnn[[1]]) >= 1){
for(n in 1:length(nnn)){
# nnn[[n]]
start_nnn = as.POSIXct(new[ nnn[[n]][1] ,which(colnames(new) == DATETIME_HEADER)],tz = "Etc/GMT-1")
end_nnn = as.POSIXct( new[ nnn[[n]][length(nnn[[n]])] ,which(colnames(new) == DATETIME_HEADER)],tz = "Etc/GMT-1")
hour_diff = end_nnn - start_nnn
units(hour_diff) = "hours"
num_hour_diff = as.numeric(hour_diff)+0.25
df_NA_tmp = data.frame(colnames(new)[k],
format(start_nnn,format = DATETIME_FORMAT),
format(end_nnn,format = DATETIME_FORMAT),
# as.character(start_nnn),
# as.character(end_nnn),
as.numeric(num_hour_diff),
"NaN")
colnames(df_NA_tmp) = colnames(df_NA)
df_NA = rbind(df_NA,df_NA_tmp)
}
}else{ ################################################################################### !!!!!!!!!!!!!!!!!!!!!! #######################
df_NA_tmp = as.data.frame(matrix(ncol = 5, nrow = 0))
colnames(df_NA_tmp) = c("Variable", "From", "To", "Hours", "Extreme_value")
}
if(length(c(w_low,w_high,w_NA)) > 0){
oor_flag[w2,which(colnames(oor_flag)==STATION)] = 0
}
# new_status[,k] = ifelse(new[,k] < lower_limit, -1, new_status[,k])
# new_status[,k] = ifelse(new[,k] > upper_limit, 1, new_status[,k])
# new_status[is.na(new_status[,k]),k] = 0
# new[,k] = ifelse(new[,k] < lower_limit, NA, new[,k])
# new[,k] = ifelse(new[,k] > upper_limit, NA, new[,k])
}
####
}else{
##########
# AGGIUNGERE QUI IL CODICE CHE PERMETTE L' AGGIORNAMENTO DEL FILE "out_of_range.csv" per variabili nuove --> legarlo a range file?
##########
to_add = c(to_add, colnames(new)[k])
df_to_add = rbind(df_to_add,rep(NA,times = nrow(df_to_add)))
df_to_add$Variable[nrow(df_to_add)] = colnames(new)[k]
df_to_add$min[nrow(df_to_add)] = NA
df_to_add$max [nrow(df_to_add)]= NA
df_to_add$to_set[nrow(df_to_add)] = 1
df_to_add$Alert_min[nrow(df_to_add)] = NA
df_to_add$Alert_Max [nrow(df_to_add)]= NA
df_to_add[nrow(df_to_add),which(colnames(df_to_add) == STATION)] = 1
to_add_oor = c(to_add_oor, colnames(new)[k])
df_to_add_oor = rbind(df_to_add_oor,rep(NA,times = nrow(df_to_add_oor)))
df_to_add_oor$Variable[nrow(df_to_add_oor)] = colnames(new)[k]
df_to_add_oor[nrow(df_to_add_oor),which(colnames(df_to_add_oor) == STATION)] = 1
}
}
df_lower_merge = cbind(rep("Too_low", nrow(df_lower)),df_lower)
colnames(df_lower_merge)[1] = "Error"
df_upper_merge = cbind(rep("Too_high", nrow(df_upper)),df_upper)
colnames(df_upper_merge)[1] = "Error"
df_NA_merge = cbind(rep("NaN_value", nrow(df_NA)),df_NA)
colnames(df_NA_merge)[1] = "Error"
df_out_of_range = rbind(df_lower_merge,df_upper_merge,df_NA_merge)
df_out_of_range = df_out_of_range[order(df_out_of_range$From),]
df_out_of_range = df_out_of_range[,c(2,1,3:ncol(df_out_of_range))]
if(length(to_add) != 0){
range = rbind(range,df_to_add[-1,])
}
if(length(to_add_oor) != 0){
oor_flag = rbind(oor_flag,df_to_add_oor[-1,])
}
variable_new = to_add
variable_to_set = range$Variable[which(range$to_set == 1)]
variable_to_set = setdiff( variable_to_set, variable_new)
range$Alert_min = as.character(range$Alert_min)
range$Alert_Max = as.character(range$Alert_Max)
write.csv(range,paste(RANGE_DIR, RANGE_FILE,sep = ""),quote = F,row.names = F, na = "")
write.csv(oor_flag,paste(MAIL_DIR, MAIL_FILE_ALERT,sep = ""),quote = F,row.names = F, na = "")
out = list(df_out_of_range, variable_new, variable_to_set) # no new_status
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.