library(dplyr)
library(entropart)
library(ggplot2)
analysis_data_FUN <- readRDS('data/analysis_data.rds')
dt <-
analysis_data_FUN(
contrast = "all",
test_data_FUN = identity,
transect_opts = list(
.layers = c("ipx", "ncr", "psm", "pio", "opx")
)
)
test <-
dt %>%
filter(signal == "base") %>%
select(species, element, data) %>%
tidyr::unnest(cols = data)
test1 <-
test %>%
select(
species, final_status, river, site, id, obs, transect, layer, annuli,
element, value) %>%
group_by(
species, final_status, river, site, id, layer, annuli, element,
) %>%
summarise(
value = sum(value)
)
# %>%
# group_by(
# species, final_status, river, site, id, layer, annuli
# ) %>%
# mutate(
# value = value/sum(value)
# )
# z <-
# test1 %>%
# filter(id == "A1", layer == "ipx")
#
# Diversity(z$value, q = -1)
test2 <-
test1 %>%
group_by(
species, final_status, river, site, id, layer, annuli
) %>%
summarise(
d = list(
purrr::map_dfr(
.x = seq(-2, 2, by = 0.2),
.f = ~ tibble(
q = .x,
d = Diversity(value, q = .x)
))),
# d = list(DivProfile(seq(0, 2, 0.2), value)),
lambda = sum(value^2),
s = Shannon(value),
shannon_d = exp(- sum( value * log(value)))
) %>%
mutate(
layer = factor(layer, levels = c("ipx", "ncr", "psm", "pio", "opx"))
)
# ggplot(
# data = filter(test2, layer == "ncr", annuli < "F"),
# aes(y = d, x = annuli, color = site, group = id)
# ) + geom_jitter(width = 0.2, size = .4)
#
# ggplot(
# data = filter(test2, layer == "ncr", annuli == "A"),
# aes(y = d, x = site, group = id)
# ) + geom_boxplot(width = 0.2, size = .6)
#
# ggplot(
# data = filter(test2, layer == "psm"),
# aes(y = d, x = site, group = id)
# ) + geom_boxplot(width = 0.2, size = .6)
#
#
# ggplot(
# data = filter(test2, layer == "pio"),
# aes(y = d, x = site, group = id)
# ) + geom_boxplot(width = 0.2, size = .6)
test3 <-
test2 %>%
select(species, river, site, id, layer, annuli, d) %>%
tidyr::unnest(cols = d)
ggplot(
data = filter(test3, layer == "ncr", annuli =="A", q >= 0.5),
aes(y = d, x = q, group = id, color = river)
) +
geom_line( size = .2, alpha = 0.2) +
stat_smooth(aes(group = river), se = FALSE)
ggplot(
data = filter(test3, layer == "ncr", annuli =="A", q >= 0.5),
aes(y = d, x = q, group = id, color = site)
) +
geom_line( size = .2, alpha = 0.2) +
stat_smooth(aes(group = site), se = FALSE)
filter(test3, q >= 0) %>%
filter(is.na(annuli) | annuli < "F") %>%
mutate(
layer2 = if_else(is.na(annuli),
as.character(layer),
paste(layer, annuli)),
layer2 = factor(layer2,
levels = c("ipx", paste("ncr", LETTERS[1:6]),
"psm", "pio", "opx")),
site3 = site %in% c("LiTN 3", "Tuck 3"),
isDead = final_status == "Dead"
) ->
g
ggplot(
data = g,
aes(y = d, x = q, group = id, color = site)
) +
geom_line( size = .2, alpha = 0.2) +
scale_color_manual(
values = c("LiTN 1" = "#99d8c9", "LiTN 2" = "#41ae76", "LiTN 3" = "#005824",
"Tuck 1" = "#fdae6b", "Tuck 2" = "#f16913", "Tuck 3" = "#8c2d04",
"Baseline" = "#525252")
) +
stat_smooth(aes(group = site, linetype = river), se = FALSE, size = 0.5) +
facet_grid(species ~ layer2, scales = "free_y")
ggplot(
data = filter(g, q == 1),
aes(y = d, x = layer2, group = id, color = site)
) +
geom_line( size = .2, alpha = 0.2) +
scale_color_manual(
values = c("LiTN 1" = "#99d8c9", "LiTN 2" = "#41ae76", "LiTN 3" = "#005824",
"Tuck 1" = "#fdae6b", "Tuck 2" = "#f16913", "Tuck 3" = "#8c2d04",
"Baseline" = "#525252")
) +
geom_point(
data = filter(g, q == 1) %>%
group_by(site, layer2) %>%
summarize(d = mean(d)),
aes(y = d, x = layer2, color = site),
inherit.aes = FALSE
) +
# stat_smooth(aes(group = site, linetype = river), se = FALSE, size = 0.5) +
facet_grid(species ~ ., scales = "free_y")
####
xx <-
test1 %>%
select(species, site, layer, annuli, element, value) %>%
mutate(
layer2 = if_else(is.na(annuli),
as.character(layer),
paste(layer, annuli)),
layer2 = factor(layer2,
levels = c("ipx", paste("ncr", LETTERS[1:6]),
"psm", "pio", "opx")),
) %>%
ungroup() %>%
select(species, site, id, layer2, element, value) %>%
group_by(species, site, id, layer2)
zz <-
xx %>%
filter(!is.na(layer2)) %>%
group_by(site, species, layer2) %>%
group_nest() %>%
filter(species == "Arav") %>%
filter(
!(layer2 %in% c("ncr C", "ncr D", "ncr E", "ncr F"))
) %>%
mutate(
data = purrr::map(
.x = data,
.f = ~ tidyr::pivot_wider(
.x, names_from = "id", values_from = "value")
),
mc = purrr::map(
.x = data,
.f = ~ MetaCommunity(.x[ , -1])
),
dp = purrr::map(
.x = mc,
.f = ~ DivProfile(q = seq(0.5, 2, by = 0.1), .x,
Biased = FALSE)
),
beta = purrr::map(
dp,
~ tibble(
q = seq(0.5, 2, by = 0.1),
value = .x[["TotalBetaDiversity"]]
)
)
)
betas <-
zz %>%
select(site, species, layer2, beta) %>%
tidyr::unnest(cols = beta)
ggplot(
data = betas,
aes(x = q, y = value, group = site, color = site)
) +
geom_line() +
facet_grid(species ~ layer2, scales = "free_y")
MetaCommunity(zz$data[[2]][ , -1])
beta_div <-
zz %>%
select(
species, layer2, dp
) %>%
mutate(
beta = purrr::map(
dp,
~ tibble(
q = seq(0.5, 2, by = 0.1),
value = .x[["TotalBetaDiversity"]]
)
)
) %>%
select(-dp) %>%
tidyr::unnest(beta)
beta_div
ggplot(
data = filter(beta_div,!(layer2 %in% c("ncr C", "ncr D", "ncr E", "ncr F")),
q >= 1,
species== "Arav"),
aes(y = value, x = q)
) +
geom_line() +
facet_grid(species ~ layer2, scales = "free_y")
zzz <-
zz$dp[[1]]$CommunityAlphaDiversities %>%
as.data.frame() %>%
mutate(
q = seq(0.5, 2, by = 0.1)
) %>%
select(q, everything()) %>%
tidyr::pivot_longer(
cols = -1
)
ggplot(
data = zzz,
aes(y = value, x = q, id = name)) +
geom_line()
####
zzz <-
xx %>%
filter(!is.na(layer2)) %>%
# group_by(species, site, layer2, element) %>%
# summarise(
# value = sum(value)
# ) %>%
group_by(species, site, layer2) %>%
group_nest() %>%
filter(species == "Arav") %>%
filter(
!(layer2 %in% c("ncr D", "ncr E", "ncr F"))
) %>%
mutate(
data = purrr::map(
.x = data,
.f = ~ tidyr::pivot_wider(
.x, names_from = "id", values_from = "value")
),
mc = purrr::map(
.x = data,
.f = ~ MetaCommunity(.x[ , -1])
),
dp = purrr::map(
.x = mc,
.f = ~ DivProfile(q = seq(0, 2, by = 0.1), .x,
Biased = FALSE)
),
beta = purrr::map(
dp,
~ tibble(
q = seq(0, 2, by = 0.1),
value = .x[["TotalBetaDiversity"]]
)
)
)
zzz
betas <-
zzz %>%
select(species, site, layer2, beta) %>%
tidyr::unnest(cols = beta)
ggplot(
data = betas,
aes(x = q, y = value, group = site, color = site)
) +
geom_line() +
scale_color_manual(
values = c("LiTN 1" = "#99d8c9", "LiTN 2" = "#41ae76", "LiTN 3" = "#005824",
"Tuck 1" = "#fdae6b", "Tuck 2" = "#f16913", "Tuck 3" = "#8c2d04",
"Baseline" = "#525252")
) +
scale_y_continuous(
"Effective number of individuals"
) +
scale_x_continuous(
"Order of diversity"
) +
facet_grid(species ~ layer2, scales = "free_y") +
theme_bw()
fff <-
zzz %>%
select(
species, layer2, mc
) %>%
group_by(species, layer2) %>%
group_nest() %>%
mutate(
data = purrr::map(
.x = data,
.f = ~ MergeMC(.x$mc, Weights = sapply(.x$mc, function(x) (x$N)))
),
dp = purrr::map(
.x = data,
.f = ~ DivPart(q = 1, MC = .x)
)
)
summary(zzz$dp[[1]])
summary(fff$dp[[1]])
dpAll <- DivPart(q = 1, MC = fff$data[[2]])
summary(dpAll)
fff$data[[1]]$Nsi
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.