knitr::opts_chunk$set(echo = FALSE, warning = FALSE) options(DT.warn.size = FALSE) library(flexdashboard) library(DT) input_info <- params$input_info samples_info <- params$samples_info pre_matrix_info <- params$pre_info pre_stats <- params$pre_stats pre_sharing <- params$sharing_pre coll_info <- params$coll_info post_info <- params$post_info post_stats <- params$post_stats post_sharing <- params$sharing_post post_summary <- params$summary_post sample_key <- params$sample_key dynamic_cols <- params$dynamic_cols secondary_col <- "#ff9470"
Input info {data-orientation=rows} ===============================================================================
valueBox(value = input_info$total_iss, color = secondary_col, icon = "fa-dna")
out <- purrr::map2_chr(input_info$quant_totals, names(input_info$quant_totals), function(val, name) { heading <- paste("###", name, "total") a1 <- knitr::knit_expand(text = heading) a2 <- knitr::knit_expand(text = paste0("`r valueBox(value = ", round(val, digits = 2), ")`")) paste(c(a1, a2), collapse = "\n") })
r paste(knitr::knit(text = paste(out, collapse = '\n\n')))
This page contains summary information regarding the input matrix as is (no pre-processing steps applied)
r sample_key
venn_diag <- eulerr::venn(samples_info)
plot(venn_diag, fills = list(fill = c("gold", "navyblue"), alpha = 0.5))
Missing samples
Metadata is missing from the association file for these samples, therefore
they'll be removed prior collision processing.
Additional samples
The association file contains information about these samples in the project
of interest but they're not found in the matrix provided as input.
cat("*Nothing to report*")
mi_df <- params$missing_info num_cols <- colnames(mi_df)[colnames(mi_df) != dynamic_cols$pcr_id] mi_df <- mi_df |> dplyr::mutate(dplyr::across( dplyr::all_of(num_cols), ~ round(.x, digits = 2) )) datatable(mi_df, class = "stripe", colnames = stringr::str_replace_all(colnames(params$missing_info), "_", " "), filter = "top", options = list(scrollY = 350))
cat("*Nothing to report*")
ai_df <- params$additional_info DT::datatable(ai_df, class = "stripe", colnames = stringr::str_replace_all(colnames(ai_df), "_", " "), filter = "top", options = list(scrollY = 350))
valueBox(value = pre_matrix_info$total_iss, color = secondary_col, icon = "fa-dna")
out <- purrr::map2_chr(pre_matrix_info$quant_totals, names(pre_matrix_info$quant_totals), function(val, name) { heading <- paste("###", name, "total") a1 <- knitr::knit_expand(text = heading) a2 <- knitr::knit_expand(text = paste0("`r valueBox(value = ", round(val, digits = 2), ")`")) paste(c(a1, a2), collapse = "\n") })
r paste(knitr::knit(text = paste(out, collapse = '\n\n')))
int_ratio <- round((pre_matrix_info$total_iss / input_info$total_iss) * 100, digits = 1) gauge(int_ratio, min = 0, max = 100, symbol = "%", gaugeSectors( success = c(85, 100), warning = c(40, 84), danger = c(0, 39)))
out <- purrr::map2_chr(pre_matrix_info$quant_totals, names(pre_matrix_info$quant_totals), function(val, name) { heading <- paste("###", name, "total with respect to input matrix") ratio <- round((val / input_info$quant_totals[[name]]) * 100, digits = 1) a1 <- knitr::knit_expand(text = heading) a2 <- knitr::knit_expand(text = paste0("`r gauge(", ratio, ", min = 0, max = 100, symbol = '%', gaugeSectors( success = c(85, 100), warning = c(40, 84), danger = c(0, 39)))`")) paste(c(a1, a2), collapse = "\n") })
r paste(knitr::knit(text = paste(out, collapse = '\n\n')))
datatable(pre_stats, class = "stripe", colnames = stringr::str_replace_all(colnames(pre_stats), "_", " "), filter = "top", rownames = FALSE, options = list(scrollY = 350)) |> formatRound(columns = colnames(pre_stats)[colnames(pre_stats) != dynamic_cols$pool], digits = 2)
cat("*Heatmaps saved as separate files for size issues*")
pre_sharing$absolute
cat("*Heatmaps saved as separate files for size issues*")
pre_sharing$on_g1 |> plotly::layout(title = list(text = "IS sharing - percentages on x"))
cat("*Heatmaps saved as separate files for size issues*")
pre_sharing$on_union |> plotly::layout(title = list(text = "IS sharing - percentages on union"))
Relative heatmap on x values
Each value in a row from left to right corresponds to the amount of shared integration sites
between x and y divided by the IS observed in the group on the x axis.
Relative heatmap on union
This plot is symmetric with respect to the diagonal. Each cell contains the amount of shared
integration sites normalized by the cardinality of the union of the 2 groups x and y.
Col1
valueBox(value = coll_info$coll_n, color = secondary_col)
coll_id_ratio <- round((coll_info$coll_n / pre_matrix_info$total_iss) * 100, digits = 2) gauge(coll_id_ratio, min = 0, max = 100, symbol = "%", gaugeSectors( success = c(0, 30), warning = c(31, 40), danger = c(41, 100)))
valueBox(value = coll_info$reassigned, icon = "fa-recycle")
ra_ratio_pre <- round((coll_info$reassigned / pre_matrix_info$total_iss) * 100, digits = 2) gauge(ra_ratio_pre, min = 0, max = 100, symbol = "%")
ra_ratio_coll <- round((coll_info$reassigned / coll_info$coll_n) * 100, digits = 2) gauge(ra_ratio_coll, min = 0, max = 100, symbol = "%")
valueBox(value = coll_info$removed, icon = "fa-trash")
rem_ratio_pre <- round((coll_info$removed / pre_matrix_info$total_iss) * 100, digits = 2) gauge(rem_ratio_pre, min = 0, max = 100, symbol = "%")
rem_ratio_coll <- round((coll_info$removed / coll_info$coll_n) * 100, digits = 2) gauge(rem_ratio_coll, min = 0, max = 100, symbol = "%")
valueBox(value = post_info$total_iss, color = secondary_col, icon = "fa-dna")
out <- purrr::map2_chr(post_info$quant_totals, names(post_info$quant_totals), function(val, name) { heading <- paste("###", name, "total") a1 <- knitr::knit_expand(text = heading) a2 <- knitr::knit_expand(text = paste0("`r valueBox(value = ", round(val, digits = 2), ")`")) paste(c(a1, a2), collapse = "\n") })
r paste(knitr::knit(text = paste(out, collapse = '\n\n')))
int_ratio_post <- round((post_info$total_iss / pre_matrix_info$total_iss) * 100, digits = 1) gauge(int_ratio_post, min = 0, max = 100, symbol = "%", gaugeSectors( success = c(85, 100), warning = c(40, 84), danger = c(0, 39)))
out <- purrr::map2_chr(post_info$quant_totals, names(post_info$quant_totals), function(val, name) { heading <- paste("###", name, "total with respect to pre-processing matrix") ratio <- round((val / pre_matrix_info$quant_totals[[name]]) * 100, digits = 1) a1 <- knitr::knit_expand(text = heading) a2 <- knitr::knit_expand(text = paste0("`r gauge(", ratio, ", min = 0, max = 100, symbol = '%', gaugeSectors( success = c(85, 100), warning = c(40, 84), danger = c(0, 39)))`")) paste(c(a1, a2), collapse = "\n") })
r paste(knitr::knit(text = paste(out, collapse = '\n\n')))
datatable(post_stats, class = "stripe", colnames = stringr::str_replace_all(colnames(post_stats), "_", " "), filter = "top", rownames = FALSE, options = list(scrollY = 350)) |> formatRound(columns = colnames(post_stats)[colnames(post_stats) != dynamic_cols$pool], digits = 2)
datatable(post_summary, class = "stripe", colnames = stringr::str_replace_all(colnames(post_summary), "_", " "), filter = "top", rownames = FALSE, options = list(scrollY = 350))
cat("*Heatmaps saved as separate files for size issues*")
post_sharing$absolute
cat("*Heatmaps saved as separate files for size issues*")
post_sharing$on_g1 |> plotly::layout(title = list(text = "IS sharing - percentages on x"))
cat("*Heatmaps saved as separate files for size issues*")
post_sharing$on_union |> plotly::layout(title = list(text = "IS sharing - percentages on union"))
Relative heatmap on x values
Each value in a row from left to right corresponds to the amount of shared integration sites
between x and y divided by the IS observed in the group on the x axis.
Relative heatmap on union
This plot is symmetric with respect to the diagonal. Each cell contains the amount of shared
integration sites normalized by the cardinality of the union of the 2 groups x and y.
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.