options(shiny.maxRequestSize = 24*1024^2) # Line exists in server, ui, global
# DEBUG ----
cat("MAX UPLOAD SIZE: ", getOption("shiny.maxRequestSize"), "\n")
# GENERAL ----
## cBioPortal
cbioportal_mapping_file <- system.file(file.path("cbioportal_ccle", "ccle_cclp_cbioportal_mapping.txt"), package="tumorcomparer")
base_url_cbioportal <- 'https://www.cbioportal.org/patient?studyId=ccle_broad_2019&caseId='
cbioportal_mapping <- read.table(cbioportal_mapping_file, sep="\t", header=TRUE, stringsAsFactors=FALSE)
cbioportal_mapping$CCLE_cBioPortal_Text[!is.na(cbioportal_mapping$CCLE_cBioPortal)] <-
paste0(base_url_cbioportal, cbioportal_mapping$CCLE_cBioPortal[!is.na(cbioportal_mapping$CCLE_cBioPortal)])
cbioportal_mapping$CCLE_cBioPortal[!is.na(cbioportal_mapping$CCLE_cBioPortal)] <-
paste0('<a target="_blank" href="', base_url_cbioportal, cbioportal_mapping$CCLE_cBioPortal[!is.na(cbioportal_mapping$CCLE_cBioPortal)], '">Link</a>')
colnames(cbioportal_mapping) <- c("Model_name", "TCGA_Type", "cBioPortal", "cBioPortal_Link")
## Plotting
plot_title_prefix <- "Mean Similarity to Tumors"
plotlyModeBarButtonsToRemove <- c(
"select2d", "sendDataToCloud", "pan2d", "resetScale2d", "hoverClosestCartesian",
"hoverCompareCartesian", "lasso2d", "zoomIn2d", "zoomOut2d", "toggleSpikelines"
)
# LOAD DATA ----
mtc_file <- system.file('extdata/mtc_results_20200331/mtc_results_20200331.rds', package="tumorcomparer")
#TODO: NOT WORKING HAS FACTORS: mtc_file <- system.file('extdata/mtc_results_20200331/mtc_results_20200331_no_factors.rds', package="tumorcomparer")
mtc_dataset <- readRDS(mtc_file)
precomputed_comparisons <- readRDS(system.file('extdata/precomputed_geneset_comparisons/precomputed_comparisons_20211019.rds', package="tumorcomparer"))
selected_geneset_comparisons <- readRDS(system.file('extdata/precomputed_geneset_comparisons/selected_geneset_comparisons_20211019.rds', package="tumorcomparer"))
mtc_dataset$Cell_Line_Name <- as.character(mtc_dataset$Cell_Line_Name)
#mtc_dataset$Cell_Line_Cancer_Type <- as.character(mtc_dataset$Cell_Line_Cancer_Type)
#mtc_dataset$Tumor_Cancer_Type <- as.character(mtc_dataset$Tumor_Cancer_Type)
mtc_dataset$Mean_Similarity_To_Tumors_AVG <- as.numeric(levels(mtc_dataset$Mean_Similarity_To_Tumors_AVG))[mtc_dataset$Mean_Similarity_To_Tumors_AVG]
mtc_dataset$Mean_Similarity_To_Tumors_MUT <- as.numeric(levels(mtc_dataset$Mean_Similarity_To_Tumors_MUT))[mtc_dataset$Mean_Similarity_To_Tumors_MUT]
mtc_dataset$Mean_Similarity_To_Tumors_CNA <- as.numeric(levels(mtc_dataset$Mean_Similarity_To_Tumors_CNA))[mtc_dataset$Mean_Similarity_To_Tumors_CNA]
mtc_dataset$Mean_Similarity_To_Tumors_EXP <- as.numeric(levels(mtc_dataset$Mean_Similarity_To_Tumors_EXP))[mtc_dataset$Mean_Similarity_To_Tumors_EXP]
mtc_dataset$AVGSIM_Zscores <- as.numeric(levels(mtc_dataset$AVGSIM_Zscores))[mtc_dataset$AVGSIM_Zscores]
mtc_dataset$MUTSIM_Zscores <- as.numeric(levels(mtc_dataset$MUTSIM_Zscores))[mtc_dataset$MUTSIM_Zscores]
mtc_dataset$CNASIM_Zscores <- as.numeric(levels(mtc_dataset$CNASIM_Zscores))[mtc_dataset$CNASIM_Zscores]
mtc_dataset$EXPSIM_Zscores <- as.numeric(levels(mtc_dataset$EXPSIM_Zscores))[mtc_dataset$EXPSIM_Zscores]
mtc_dataset$AVGSIM_Percentile_Ranks <- as.numeric(levels(mtc_dataset$AVGSIM_Percentile_Ranks))[mtc_dataset$AVGSIM_Percentile_Ranks]
mtc_dataset$MUTSIM_Percentile_Ranks <- as.numeric(levels(mtc_dataset$MUTSIM_Percentile_Ranks))[mtc_dataset$MUTSIM_Percentile_Ranks]
mtc_dataset$CNASIM_Percentile_Ranks <- as.numeric(levels(mtc_dataset$CNASIM_Percentile_Ranks))[mtc_dataset$CNASIM_Percentile_Ranks]
mtc_dataset$EXPSIM_Percentile_Ranks <- as.numeric(levels(mtc_dataset$EXPSIM_Percentile_Ranks))[mtc_dataset$EXPSIM_Percentile_Ranks]
mtc_dataset$Categorization <- as.character(mtc_dataset$Categorization)
mtc_dataset$AVGSIM_Zscores_wrt_Tumors <- as.numeric(levels(mtc_dataset$AVGSIM_Zscores_wrt_Tumors))[mtc_dataset$AVGSIM_Zscores_wrt_Tumors]
mtc_dataset$MUTSIM_Zscores_wrt_Tumors <- as.numeric(levels(mtc_dataset$MUTSIM_Zscores_wrt_Tumors))[mtc_dataset$MUTSIM_Zscores_wrt_Tumors]
mtc_dataset$CNASIM_Zscores_wrt_Tumors <- as.numeric(levels(mtc_dataset$CNASIM_Zscores_wrt_Tumors))[mtc_dataset$CNASIM_Zscores_wrt_Tumors]
mtc_dataset$EXPSIM_Zscores_wrt_Tumors <- as.numeric(levels(mtc_dataset$EXPSIM_Zscores_wrt_Tumors))[mtc_dataset$EXPSIM_Zscores_wrt_Tumors]
mtc_dataset$Mean_Similarity_To_All_Tumors_AVG <- as.numeric(levels(mtc_dataset$Mean_Similarity_To_All_Tumors_AVG))[mtc_dataset$Mean_Similarity_To_All_Tumors_AVG]
mtc_dataset$Mean_Similarity_To_All_Tumors_MUT <- as.numeric(levels(mtc_dataset$Mean_Similarity_To_All_Tumors_MUT))[mtc_dataset$Mean_Similarity_To_All_Tumors_MUT]
mtc_dataset$Mean_Similarity_To_All_Tumors_CNA <- as.numeric(levels(mtc_dataset$Mean_Similarity_To_All_Tumors_CNA))[mtc_dataset$Mean_Similarity_To_All_Tumors_CNA]
mtc_dataset$Mean_Similarity_To_All_Tumors_EXP <- as.numeric(levels(mtc_dataset$Mean_Similarity_To_All_Tumors_EXP))[mtc_dataset$Mean_Similarity_To_All_Tumors_EXP]
mtc_dataset$Average_Of_Percentile_Ranks <- as.numeric(levels(mtc_dataset$Average_Of_Percentile_Ranks))[mtc_dataset$Average_Of_Percentile_Ranks]
mtc_dataset$Rank_of_Average_Of_Percentile_Ranks <- as.numeric(levels(mtc_dataset$Rank_of_Average_Of_Percentile_Ranks))[mtc_dataset$Rank_of_Average_Of_Percentile_Ranks]
#saveRDS(mtc_dataset, 'inst/extdata/mtc_results_20200331/mtc_results_20200331_no_factors.rds')
#tmp <- readRDS('inst/extdata/mtc_results_20200331/mtc_results_20200331_no_factors.rds')
# Column name mapping
mtc_selected_columns <- c(
"Cell Line"="Cell_Line_Name",
#"Cell Line Type"="Cell_Line_Cancer_Type",
#"Tumor Type"="Tumor_Cancer_Type",
"% Rank by Mutation"="MUTSIM_Percentile_Ranks",
"% Rank by Copy Number"="CNASIM_Percentile_Ranks",
"% Rank by Expression"="EXPSIM_Percentile_Ranks",
"% Rank by Avg % Ranks"="Rank_of_Average_Of_Percentile_Ranks")
comparison_result_columns <- c(
"Cell Line"="Cell_Line_Name",
#"Cell Line Type"="Cell_Line_Cancer_Type",
#"Tumor Type"="Tumor_Cancer_Type",
"Mutation Score"="mut_score",
"Copy Number Score"="cna_score",
"Expression Score"="exp_score",
"Combined Score"="combined_score")
tcgaTypes <- c(
"Adrenocortical Carcinoma"="ACC",
"Bladder Urothelial Carcinoma"="BLCA",
"Breast Invasive Carcinoma"="BRCA",
"Cervical Squamous Cell Carcinoma"="CESC",
"Cholangiocarcinoma"="CHOL",
"Colon Adenocarcinoma"="COAD",
"Diffuse Large B-Cell Lymphoma"="DLBC",
"Esophageal Adenocarcinoma"="ESCA",
"Glioblastoma Multiforme"="GBM",
"Head and Neck Squamous Cell Carcinoma"="HNSC",
"Kidney Renal Clear Cell Carcinoma"="KIRC",
"Acute Myeloid Leukemia"="LAML",
"Low-Grade Glioma"="LGG",
"Liver Hepatocellular Carcinoma"="LIHC",
"Lung adenocarcinoma"="LUAD",
"Lung squamous cell"="LUSC",
"Mesothelioma"="MESO",
"Ovarian"="OV",
"Pancreatic Adenocarcinoma"="PAAD",
"Prostate Adenocarcinoma"="PRAD",
"Rectal Adenocarcinoma"="READ",
"Cutaneous Melanoma"="SKCM",
"Stomach Adenocarcinoma"="STAD",
"Thyroid Cancer"="THCA",
"Endometrial Carcinoma"="UCEC"
)
tcgaTypes <- tcgaTypes[tcgaTypes %in% as.character(unique(mtc_dataset$Tumor_Cancer_Type))]
genesets <- c("Most Variable Genes", "Cell Cycle", "HIPPO", "MYC", "NOTCH", "PI3K", "RTK RAS", "TGF-Beta", "WNT")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.