print.nem <- function(x, ...) {
# general
cat("Object of class ",class(x),"\n")
cat("\n")
# slots
cat("$graph: phenotypic hierarchy (graphNEL object) with",ncol(x$graph),"genes\n")
cat("Inference scheme: ",x$control$type,"\n")
if(length(x$mLL) == 1)
cat("log posterior (marginal) likelihood $mLL:", x$mLL, "\n")
if(x$control$type == "mLL")
cat("Error probabilities alpha and beta:", x$control$para,"\n")
if(x$control$type == "FULLmLL")
cat("Hyperparameters for error probability distributions:", x$control$hyperpara, "\n")
cat("network structure regularization parameter $lambda (default: 0):",x$control$lambda ,"\n")
cat("Prior weight $delta for assigning E-genes to virtual S-gene 'null' (default: 1):",x$control$delta ,"\n")
if(!is(x, "score.list")){
cat(length(x$selected), " selected E-genes:\n")
for(i in 1:length(x$mappos)){
cat("-->", names(x$mappos)[i], ":", length(x$mappos[[i]]), " attached E-genes\n")
}
cat("\nNOTE: One E-gene can be attached to multiple S-genes\n")
cat("\n")
}
}
print.nem.greedy = function(x, ...){
print.nem(x, ...)
}
print.ModuleNetwork= function(x, ...){
print.nem(x, ...)
}
print.pairwise = function(x, ...){
print.nem(x, ...)
cat("$scores: posterior distributions of local models\n")
cat("\n")
# summary
cat("Summary of MAP estimates:\n")
tmp <- table(apply(x$scores[,1:4],1,which.max))
summ <- c(sum(tmp),tmp[1],tmp[2]+tmp[3],tmp[4])
names(summ) <- c("all","..","->","<->")
print(summ)
}
print.triples = function(x, ...){
print.nem(x, ...)
}
print.nem.greedyMAP = function(x, ...){
print.nem(x, ...)
}
print.nem.jackknife = function(x, ...){
print.nem(x, ...)
}
print.nem.bootstrap = function(x, ...){
print.nem(x, ...)
}
print.nem.consensus = function(x, ...){
print.nem(x, ...)
}
print.nem.BN = function(x, ...){
print.nem(x, ...)
}
print.mc.eminem = function(x, ...){
print.nem(x, ...)
}
print.dynoNEM = function(x, ...){
print.nem(x, ...)
}
print.score <- function(x, ...) {
cat("scores for ",length(x$mLL)," models\n")
best = which.max(x$mLL)
cat("--> best model is number ", best,"\nInformation on this model:\n")
x$mLL = x$mLL[best]
x$mappos = x$mappos[[best]]
print.nem(x, ...)
#cat("\n")
#cat("plot this object to see the graph\n")
}
print.score.list <- function(x, ...) {
cat("scores for ",length(x$mLL)," models\n")
best = which.max(x$mLL)
cat("--> best model is number ", best,"\nInformation on this model:\n")
x$mLL = x$mLL[best]
print.nem(x, ...)
#cat("\n")
#cat("plot this object to see the graph\n")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.